MaMaSELF

Master Program in Material Science

Diffraction investigation of the

Half-Heusler to Full-Heusler transition in
Ni>_.MnSb

David Simonne, davidsimonne@tum.de

Heusler alloys can be divided into two important classes. If off-stochiometric full-Heusler
(FH) X2YZ alloys are famous for their ferromagnetic shape memory properties, half-Heusler
(HH) alloys of formula XYZ have shown application in spintronics due to their ferromag-
netic properties. Some systems present both structures as a function of temperature and/or

composition.

It has been shown that magnetic transitions as well as structural transitions take place
in the Nis_,MnSb system. However, a half to full Heusler transition has never been studied
precisely in term of long-range ordering, i.e. by scattering. Moreover, the kinetics of order-
ing at room temperature after a given heat treatment are still unknown. In this thesis we
will present an overview of the crystalline structures of the system and of its temperature

dependent half-Heusler to full-Heusler transition.

In-situ temperature dependent neutron powder diffraction (NPD) has been performed
on samples with different concentrations x of Ni to have a better grasp of the atomic scale
dynamics during the Cly, - L2; phase transition. A particular emphasis has been put on
instrumental corrections and refinement during this project. Ordering kinetics were deter-
mined by the extraction of both structural and dynamical information from diffractograms

covering a wide range of temperature and composition in Nis_,MnSb.

Master Thesis (30 ECTS)

September 2019

Supervisor: Dr. Michael Leitner, Technische Universitat Miinchen

Examiner: Prof. Dr. Wolfgang Schmahl, Ludwig-Maximilians-Universitat Miinchen


mailto:davidsimonne@tum.de




Signed Declaration

David Simonne

I declare that this thesis was composed by myself, that the work
contained herein is my own except where explicitly stated otherwise in
the text, and that this work has not been submitted for any other
degree or processional qualification except as specified.

Approved by: Dr. Michael Leitner Advisor
Prof. Dr. Wolfgang Schmahl MaMaSELF responsible for LMU
David Simonne Author

Acceptance date: September 30, 2019






Diffraction investigation in Nis_,MnSbh

I would like to thank my advisor Dr. Michael Leitner for taking me into his group at
TUM and for having the time to help during my stay in Garching. Even if following
your explanations were sometimes challenging, I truly learned a lot thanks to you
during this master thesis. The advice were precious and helped me to familiarize
myself with a new field. I came to Germany without much experience in
programming applied to science or dynamics in hard condensed matter before this
thesis and did not know what kind of research I would like to perform in the future. I
think now that thanks to this thesis, I have discovered fields in which I would like to
continue my research.

Dr. Di Matteo has always been very kind to me and it is thanks to him that I know
about MaMaSELF and am part of this program. Along with the other physics
professors in Rennes, he continuously kept my interest in physics high up during my
bachelor and my first year of master.

Dr. Laurent Guérin made my life incredibly more interesting by sending me to Japan
after my bachelor. At that time, I had in plan to participate in MaMaSELF but
instead, I was allowed to discover a new country, new people, a new language while
keeping on learning about physics. That time in Sendai also showed me how one
could appreciate research in material Science.

Dr. Jean-Frangois Moulin and his team at REFSANS in 2016 accompanied me
thoughout my bachelor thesis. I would not have come back to Munich if I did not
appreciate my time in their company.

Finally, I would like to thank Kim, Ulrike and Josef for spending time and sharing
lunch with me in TUM. I would also like to thank my roommates in Munich,
especially Brittany and Hsu with whom I had a great time in Germany.

In general, I would like to thank the whole MaMaSELF team, especially Christiane,
Karin and Phillipe for making this adventure possible, along with the respective
teams of Rennes, Montpellier, Torino and Miinchen where I had some of the best

experiences in my life.

The last words are of course for my parents without whom it would not have been

possible to do any of the above. Thank you Lucas for being a great brother and for

pushing myself by also being a great scientist.

David Simonne Chapter 0



Contents

1 Crystal structures, neutron diffraction, and experimental methods 11

1.1 Crystal structures . . . . . . . . ..o 11
1.1.1 Heusler alloys . . . . . ... .. ... L 11

1.1.2 Nip_,MnSb . . . . ... 13

1.2 Neutron diffraction . . . . . . .. ... ... ... o 14
1.2.1 Neutrons as a probe . . . . . . . ... L. 16

1.2.2  Neutron scattering . . . . . . . ... ... L 18

1.2.3 Intensity of a nuclear Bragg peak . . . . . ... ... ... ... 23

1.3 Magnetic neutron scattering . . . . . . ... ..o 25
1.3.1 Magnetic moments . . . . . .. ... oL 25

1.3.2  Magnetism in 3d transition metals and Heusler alloys . . . . . . 27

1.3.3 Intensity of a magnetic Bragg peak . . . . ... ... ... ... 28

1.4 Powder diffraction . . . . . ... ..o 32
2 Data correction in neutron diffractometers 37
2.1 Dataoverview . . . . . ... 37
2.1.1 Sample preparation . . . . . .. ..o 37
2.1.2  Objective discussion of data quality . . . . . . . .. .. ... .. 38

2.2 Models and refinement methods for neutron diffraction . . . . . . . .. 40
2.2.1 Python, a modern language adapted to science . . . . . . . . .. 41
2.2.2  Whole pattern refinement in neutron powder diffraction . . . . . 43
2.2.3 Least squares method . . . . . . . .. ... ... .. ... ... 54

2.3 Correction coefficients . . . . . . . .. ... 59
2.3.1 Intensity correction coefficient . . . . . . . ... ... ... ... 60
2.3.2 Opverlap correction coefficient . . . . ... ... ... ... ... 64
2.3.3 Validity and discussion . . . . . . .. ... 67

3 Understanding the ordering process in Ni, ,MnSb 69
3.1 The L2;-C1y phase transition in Ni_,MnSb . . . . . . ... ... ... 70
3.2 Bragg peaks and structural analysis . . . . . .. ... ... 72
3.2.1 X-Ray diffraction . . . . . .. ... 72
3.2.2  Ordering and structure factor for neutron diffraction in Nis_,MnSb 73

3.3 In-situ neutron powder diffraction . . . . . .. ... ... 75
3.3.1 Refinement results . . . . . ... ... 0oL 75
3.3.2 Discussion . . . . . . ... 82

A Models for correction 91



List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10
1.11

2.1

2.2

2.3

24

2.5

Half-Heusler structure (a) and its relation to the zinc blende structure
(b) and to the rock salt structure(c). . . . .. ... ... L.
Full-Heusler structure (a) and its relation to the zinc blende structure
(b) and to the rock salt structure(c). . . . . . ... .. ... ...
The L2, and C1;, structure in Nis_,MnSb depicted as four interpenetrat-
ing FCC lattices on the A (0,0,0), B(3/4, 3/4, 3/4), C(1/2, 1/2, 1/2)
and D(1/4, 1/4, 1/4) as given by Webster (1984). . . . . . . . ... ..
The A2 (a), B2 (b), full-Heusler L2, (c¢) and half-Heusler C1;, (d) struc-
tures. NiMnSb and NisMnSb here illustrate both full-Heusler and half-
Heusler crystal structures. One can see that a C1b structure can transfer
into a L21 structure via accommodating the Ni atoms equally on the 4a
and 4b Wyckoff sites. . . . . . . . ..o
The evolution of the flux of neutrons versus the wavelength (hence the
energy) of the neutrons depending on the moderator (The reactor and
the neutron sources 2003). . . . . . .. ..
Geometry of a scattering experiment, in polar coordinates. . . . . . . .
Geometry of the momentum transfer C_j in reciprocal space, 260 is the
scattering angle. . . . . . . . ..o
The squared magnetic form factor for Mn?* and Ni** in the dipole
approximation. . . . . . ... ...
Scheme of the instrumental setup used for neutron diffraction in SPODI,
with three soller slits collimators, a single crystal monochromator and a
multidetector. . . . . ... oL
Debye Scherrer Rings . . . . . . . . .. o
Lorentz factor in the angular range of SPODIL. . . . . . . .. .. .. ..

The geometry of the 3T2 instrument (figure 2.1a) is similar to the ge-
ometry of SPODI (figure 2.1b) both using three soller collimators and a
single crystal monochromator with a large take-off angle. . . . . . . . .
SPODI data at room temperature for Ni; gsMnSb as a function of the
scattering angle 26. . . . . . ..o
LLB data at room temperature for Ni;osMnSb as a function of the
scattering angle 20. . . . . . . ..o
LLB data at room temperature for Ni;osMnSb as a function of the
scattering angle 26, drawn for each detector. . . . . . . . . ... .. ..
LLB data at room temperature for Ni; opsMnSb as a function of the scat-
tering angle 26, drawn for each detector. The difference when neigh-
bouring overlap can be clearly seen in this region of medium q. . . . . .

39

41



Diffraction investigation in Nis_,MnSbh

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

JupyterLab allows one to combine raw Python code, Jupyter notebooks,
images, windows terminal, Markdowns(.md) and notebook text files

(.txt) within a customizable interface. . . . . . . ... .. ... 44
The FWHH computed for SPODI given by (2.1) for U = 0.0137,V =
—0.0156 and W =0.160. . . . . . . . ... 47
Python function computing the position of the peaks from the lattice
parameter and the Miller indices. . . . . . . ... ... ... ...... 49

Background curves fitted through a classical polynomial approach plot-
ted in orange for Nij s MnSb at 45 °C (top) and 790°C (bottom) for
3T2. . e 51
Background curves fitted through a Chebyshev polynomial approach
plotted in orange for Nij gsMnSb at 45 °C (top) and 790°C (bottom) for
3T2. The background curves follows the evolution of the background

much better than in a classical polynomial approach. . . . . . . .. .. 52
A Gaussian model fitted through least squares method on a single de-
tector with A =70.36,u =49.16 and c =0.12. . . . . . . . . . . .. .. 53
A 3T2 diffractogram for Ni; gsMnSb at 200°C, model fitted through least
squares method(a) and residues (b). . . . . . . .. ... L 54

A SPODI diffractogram for Ni; gsMnSb at room temperature, model
fitted through least squares methods with characteristics in annex. U V
and W are fixed parameters. . . . . . .. ... 61
The full width at half height H computed via (2.1) for each temperature
as a result of the first fitting routine (a) and the final values taken for
the fitting of the 3T2 diffractograms (b). . . . .. ... ... ... ... 61
3T2 diffractogram for Nij gsMnSb at 200°C, model fitted through least
squares methods with characteristics in annex. U V and W are fixed
parameters. . . ... L. Lo e 62
3T2 data at 200°C for Ni; gsMnSb as a function of the scattering angle
20 (a), model created by merging the SPODI and 3T2 models (b), Su-
perposition of both curves underlining the intensity issues regarding the
background and the peaks for 3T2 (¢). . . . ... ... ... ... ... 63
Superposition of both the corrected 3T2 data at 200°C for Ni; gsMnSb
as a function of the scattering angle 20 (blue) and the previous model
that was created by merging the SPODI and 3T2 models (orange) (a). 64
Intensity correction coefficients for the Bragg peaks, obtained by the
means of the SPODI diffractograms and least square methods (b), in-
tensity correction coefficients for the background, obtained by the means
of the SPODI diffractograms and least square methods (b). Both cor-
rection coefficients are meant to correct the overall problems of intensity
of the 3T2 diffractograms. . . . . . . . . . . .. ... ... ... ... . 64
3T2 diffractogram plotted at 200°C for Ni; gsMnSb without any cor-
rections (a), 3T2 diffractogram plotted at 200°C for Ni; gsMnSb after
each detector was corrected for its efficiency and position by the SPODI

corrections (b), difference in the (26,y;) bins (¢). . . . . . ... ... .. 65
Model on corrected Nil.05MnSbh, 200°C diffractogram, fitted through
LSM. . . . 66
The overlap correction coefficients for the shifts (a) and for the efficien-
cies (b). . . .. 67

David Simonne Chapter 0



Diffraction investigation in Nis_,MnSbh

2.22 Nij g5sMnSh, 200°C, 3T2 diffractogram plotted detector by detector with-

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Al

A2

A3

out any corrections (a) with the first SPODI corrections (b) and with
the final corrections (¢). . . . . . . . ... 68

Latest phase diagram for the Ni,_,MnSb structure, given by the sum-
mation of the work of Webster and Mankikar (1984), Nagasako et et al.
(2015) and Neibecker (2018). . . . . . . . . .. ... 70
XRD diffractograms of Niy_,MnSb samples on a logarithmic intensity

scale showing the measured data (colored curves) and the Rietveld-
refined diffractograms (black curves). The patterns have been recorded

at room temperature using Cu-Ka radiation. Samples have been quenched
from 1173 K. Peak families are indicated below the diffractograms, taken

from Neibecker (2018). . . . . . . . . ... 73
Room temperature relative absolute squared structure factors (RASSF)
obtained via SPODI (circles) for the A2, B2 and C1,,/L2; peak families

for 5 compositions of the Niy_,MnSb system together with the calculated
absolute squared structure factors under various types of disorder (lines).

As introduced before, brackets indicate a state of disorder between the
constituents. . . . . . . ..o 7
Temperature dependant relative absolute squared structure factors ob-
tained via 3T2 (circles) for the A2, B2 and C1b/L21 peak families for 5
compositions of the Ni,_,MnSb system together with the calculated ab-
solute squared structure factors under various types of disorder (lines).

As introduced before, brackets indicate a state of disorder between the
constituents. . . . . . ... Lo 78
Energies of anti-site defects (left) and atomic swap defects (right) in C1,,
NiMnSb. For the swap defects, the energy of the distant and nearest-
neighbor swap are respectively in the third and fourth columns. Com-
puted by different methods, taken from Alling, Shallcross, and Abrikosov

2006 . ..o e 80
Temperature dependent lattice parameters for four compositions of the
Niy_,MnSb (a,b,c,d) system as obtained from in-situ neutron diffraction

at 3T2 (heating and cooling) and from SPODIL. . . . .. ... ... .. 81
Temperature dependent Debye-Waller factor for four compositions of the
Niy_,MnSb (a,b,c,d) system as obtained from in-situ neutron diffraction

at 3T2 (heating and cooling) and from SPODIL. . . ... ... ... .. 83

3T2 data at 200°C for Ni; o5sMnSbh as a function of the scattering angle
20(a), model created by merging the SPODI and 3T2 models (b), Su-
perposition of both curves underlining the intensity issues regarding the
background and the peaks for 3T2 (¢). . . .. ... ... .. ... ... 91
Superposition of both the corrected 3T2 data at 200°C for Nij osMnSb
as a function of the scattering angle 26(blue) and the previous model
that was created by merging the SPODI and 3T2 models (orange) (a). 91
3T2 data at room temperature for Ni; 50MnSb as a function of the scat-
tering angle 20(a), model created by merging the SPODI and 3T2 models
(b), Superposition of both curves underlining the intensity issues regard-
ing the background and the peaks for 3T2 (¢). . . . . . ... ... ... 92

David Simonne Chapter 0



Diffraction investigation in Nis_,MnSbh

A.4 Superposition of both the corrected 3T2 data at room temperature for
Niy 50MnSb as a function of the scattering angle 26(blue) and the pre-
vious model that was created by merging the SPODI and 3T2 models
(orange) (). . . . v o o 92
A5 3T2 data at 130°C for Ni; goMnSb as a function of the scattering angle
26(a), model created by merging the SPODI and 3T2 models (b), Su-
perposition of both curves underlining the intensity issues regarding the
background and the peaks for 3T2 (¢). . . .. ... ... ... ... .. 93
A.6 Superposition of both the corrected 3T2 data at 130°C for Ni; gopMnSh
as a function of the scattering angle 26(blue) and the previous model
that was created by merging the SPODI and 3T2 models (orange) (a). 93

David Simonne Chapter 0



List of Tables

1.1
1.2

2.1

2.2

2.3

24

3.1

3.2

3.3

3.4

3.5

SPODI technical data (Hoelzel, Senyshyn, and Dolotko 2015). . . . . .
Summary of the main perks and disadvantages of using neutrons or X-
ray for diffraction (Borfecchia et al. 2013). . . . . ... ... ... ...

Sample compositions as determined by WDS/EDS, taken from Neibecker

The three peak shapes commonly used in powder diffraction and the
equations ruling their distributions. . . . . . . . .. ... ...
Peak broadening in neutron powder diffraction. The main contributions
are either due to the sample or to the instrumental setup. Instrumental
corrections are always in place. . . . . . ... ..o
First Miller indices for each peak family, the value computed by h? +
k% + 2 is then proportional to the peak positions through (2.11).

Refined relative site occupancies of Ni and lattice parameters for room
temperature X-ray diffractograms of a series of Ni,_,MnSb samples
quenched from 1173 K, taken from Neibecker (2018). . . . . .. .. ..
Miller indices and structure factor of the crystalline planes associated to
each peak family assuming perfect order and occupations. . . . . . . . .
Miller indices, peak area, peak position, multiplicity, Lorentz factor,
Debye-Waller factor and RASSF computed for the C1,, peak family via
refinement of the room temperature diffractogram recorded at SPODI
for N11.25MnSb. ...............................
Equations followed for the computation of the theoretical relative abso-
lute structure factor. The final results plotted in the following figures
have been normalised regarding the intensity of A2. The brackets indi-
cate a state of disorder. . . . . . . ... Lo
Energy cost and amount of defects created for different vacancy annihi-
lation process. The energy is computed by utilizing the swap or anti-site
energy of individual process given by Alling, Shallcross, and Abrikosov

10

45



Chapter 1

Crystal structures, neutron
diffraction, and experimental
methods

The purpose of this thesis is to give a global understanding of a neutron diffraction
experiment, from theory to data collection, correction and analysis, resulting in a
precise understanding of how one can analyze and understand the ordering mechanism
of the C1,-L2; phase transition in the Ni;_,MnSb system. This first chapter will
introduce the crystal structures of interest, the fundamentals of neutron diffraction
and will as well give some insights into the instrumental setups that were used to
provide the data.

1.1 Crystal structures

1.1.1 Heusler alloys

Our compounds belong to the family of Heusler alloys, named after the German engi-
neer Friedrich Heusler who in 1903 discovered that some systems showed ferromagnetic
properties despite having non-magnetic constituents (Heusler 1903; Heusler 1904).

There are two main different Heusler structures, full-Heusler alloys with the sto-
chiometry 2:1:1 and half-Heusler alloys with the stochiometry 1:1:1. Half-Heusler alloys
are typically written in the form XYZ, ranked by putting the most electropositive el-
ement first and the most electronegative element last. However, since we will use the
X9YZ configuration in the full-Heusler structure, the NiMnSb order is chosen where
the element that is used twice in the full-Heusler configuration is put first and the most
electronegative element is put at the end.

It has been shown that full-Heusler alloys of the formula Ni;MnSb crystallize in the
cubic L2y structure (Castelliz 1951; Szytula et al. 1972) whereas half-Heusler NiMnSb
alloys crystallize in the non-centrosymmetric cubic Cly, structure (Ritchie et al. 2003;
G. E. Bacon and Plant 1971). We could also have inverse Heuslers such as NiMnySb
in which the Mn occupies the vacancy sublattice in the half-Heusler structure with the
same Cly, symmetry, this structure is however not relevant in the following discussions.

11
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Half-Heusler alloys

The C1,, structure has been defined as the space group 216 F43m and can be understood
as four interpenetrating FCC lattices centered on the Wickoff positions 4a, 4b, 4c¢ and
4d respectively in (0, 0, 0), (1/2, 1/2, 1/2), (1/4, 1/4, 1/4) and (3/4, 3/4, 3/4) (Hahn
2006; G. E. Bacon and Plant 1971).

) “‘b OO -
& ®

c‘c‘ &y ©

Figure 1.1: Half-Heusler structure (a) and its relation to the zinc blende structure (b) and to
the rock salt structure(c).

The half-Heusler structure is commonly pictured as the sum of a covalent and an
ionic part. For NiMnSb, Ni and Mn atoms have a distinct cationic character, whereas
Sb can be seen as the anionic counterpart (Graf, Felser, and Parkin 2011). One can see
in the figure 1.1 that a ZnS zinc blende sublattice occupying the Wyckoff positions 4a
and 4c with its octahedral sites occupied (4b) leads to the structure of a half-Heusler
alloy. This structure underlines the covalent bond that is determinant regarding the
electronic properties the alloy (Webster 1968). Moreover, one can also notice a NaCl
ordering on the position 4a and 4b. This salt structure emphasizes the ionic interaction
between two elements who show respectively a cationic and anionic character. In the
case of NiMnSb, Mn and Sb will build the NaCl rock salt structure whereas the Zinc
blende structure is assumed by Ni and anionic Sb with Sb, Mn, Ni and vacancies
respectively on the 4a, 4b, 4c and 4d Wyckoff sites.

Full-Heusler alloys

€e¢¢’ Qe ¢
(%

c&e ¢

Figure 1.2: Full-Heusler structure (a) and its relation to the zinc blende structure (b) and to
the rock salt structure(c).

Similar to the C1y, structure, a rock salt-type lattice is formed by the least and most
electropositive element (Mn and Sb). Due to the ionic character of their interaction,
these elements are coordinated octahedrally. On the other hand, all hexahedral holes
are filled by Ni with respect to the salt chloride structure. As seen in the figure 1.2
This structure can also be understood as a zinc blende-type sublattice, build up by

12 David Simonne Chapter 1
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one Ni and Sbh, the second Ni occupies the remaining tetrahedral holes, whereas Mn is
located in the octahedral holes (Graf, Felser, and Parkin 2011).

The L2; structure has been defined as the space group 225 Fm3m with the Wickoff
positions 4a (0, 0, 0), 4b (1/2, 1/2, 1/2) and 8c (1/4, 1/4, 1/4), (3/4, 3/4, 3/4) by
Hahn (2006) also described with four interpenetrating FCC lattices centered in (0,
0,0), (1/2, 1/2, 1/2), (1/4, 1/4, 1/4) and (3/4 3/4, 3/4). The Ni atoms are placed
on the Wyckoff positions 8c, while the Y and the Z atoms are located at 4a and 4b,
respectively.

1.1.2 Niy_,MnSb

In the frame of this thesis, we consider the full-Heusler Ni;MnSb system and the
half-Heusler NiMnSb as being quaternary Heusler alloys with the elements Ni, Ni or
vacancies, Mn and Sb in terms of four interpenetrating FCC sub-lattices situated on
the Wyckoff sites 4a, 4b, 4c and 4d with origins respectively at (0, 0, 0), (1/2, 1/2,
1/2), (1/4, 1/4, 1/4) and (3/4, 3/4, 3/4). This structure, as seen in figure 1.3 gives
with the FCC translations 16 sites per unit cell, when NioMnSb contains 16 atom per
unit cell, NiMnSb contains only 12.

¢

Figure 1.8: The L2y and C1y structure in Nio_, MnSb depicted as four interpenetrating FCC

lattices on the A (0,0,0), B(3/4, 3/4, 3/4), C(1/2, 1/2, 1/2) and D(1/4, 1/4, 1/4) as given
by Webster (1984).

Additional structures are given in the figure 1.4, the use of brackets indicating a
state of disorder. BCC A2, space group 229 (Im3m) corresponds to a state of full
disorder where Ni, Ni;_,, Mn and Sb each randomly occupy one of the four FCC
lattices in the (NiNi;_,MnSb) system. B2, space group 221 (Pm3m) corresponds to
a structure derived from the A2 structure where ordering occurred on the la and 1b
Wyckoff position, resulting in a (NiNi;_,) (MnSb) system. The difference between B2
and L2; would then reside in an NaCl ordering of Mn and Sb where Ni and Ni(1-x)
randomly occupy the 8c sites. The final transition to a Cly, system would be the result
of a breaking of symmetry leading to a phase transition where the vacancy would go
from an equal distribution between the 4a and 4b sites to exclusively occupying the 4b
site. The A2 structure is not observed but will be used during the refinement (Chapter
3) for normalisation purposes.

13 David Simonne Chapter 1
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(MnSb)
(NiNi)
(NiNiMnSb)

Figure 1.4: The A2 (a), B2 (b), full-Heusler L2, (c¢) and half-Heusler C1, (d) structures.
NiMnSb and NigMnSb here illustrate both full-Heusler and half-Heusler crystal structures.
One can see that a C1b structure can transfer into a L21 structure via accommodating the Ni
atoms equally on the 4a and 4b Wyckoff sites.

1.2 Neutron diffraction

The method that was chosen to extract information about the crystalline system is
neutron powder diffraction, the following section will discuss the properties of the
neutron in details and its interaction with matter.

Basic properties of the neutron

In the following paragraphs, the major physical concepts that are needed to understand
neutron scattering will be introduced. Neutrons are subatomic particles of neutral
charge. They were discovered in the year 1932 by James Chadwick when he bombarded
boron with alpha particles.

Neutrons can be produced either by nuclear fission or by spallation. Nuclear fission
is accompanied by the emission of neutrons; it provides a constant neutron flux from
nuclear reactors as in FRMII, Munich, where the nuclear fission of uranium is used.

Spallation, however, uses an accelerated proton beam that, by hitting a heavy metal
target, expels neutrons that are then used by the instruments. Shortly, spallation is
more expensive but more flexible than nuclear fission, allowing for pulsed beams to
be used easily. The Institut Laue Langevin (ILL) is an example of a fission reactor in
Grenoble, where highly-enriched *°U is used to produce neutrons. To counter the heat
that is permanently produced by the reactions inside the reactor, heavy water (D,0O)
is used as a moderator. It is preferred to HyO since it has a low neutron absorption
cross section compared to light water. A radiation shield is also provided by light water
surrounding the reactor.

14 David Simonne Chapter 1
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The neutrons are then collected in a moderator where they scatter inelastically.
The scattering being a statistical process, the energy of the neutrons will satisfy a
Maxwellian flux distribution defined by:

o) vt e { 0 ()

with ¢(v)dv is the number of neutrons through unit area per second with velocities
between v and dv, m is the mass of the neutron, and kg is the Boltzmann constant.
The maximum of the Maxwellian flux distribution is given for:

v = (3k3T>1ﬂ (1.2)

m

We can then write the mean energy of neutrons:

3 1
Ezé@T:?m2 (1.3)

that is conventionally approximated as:

E = kgT (1.4)

Neutrons can not only be seen as particle but also as waves, whose wavelength is
defined by the De Broglie wavelength:

CE
muv 2mFE

(1.5)

with h being the Planck constant, p the momentum of the neutron and k the wavevector
defined as:

p = hk (1.6)
k= 27” (1.7)

To give an order of magnitude, a temperature of 293 K would give a mean wave-
length of about 1.8 Angstrém and an energy of about 25 meV (of the order of molecular/
lattice excitations).

Sometimes, it is preferable to use neutrons of higher or lower energy to have a better
flux of neutrons at a selected wavelength. Inside the laboratoire Léon Brillouin (LLB),
Saclay, France, as in most of the modern neutron facilities, moderators of different
temperatures are used to modify the Maxwell distribution and to produce hot or cold
neutrons (figure 1.5). For the cold sources, liquid hydrogen insures the role of moderator
whereas for the hot source, the moderator consists of a cylinder of graphite heated by
the v rays of the reactors (The reactor and the neutron sources 2003). Moderation is
also done by the water surrounding the core, necessary to convert the MeV-neutrons
after fission to useable energies.

15 David Simonne Chapter 1



Diffraction investigation in Nis_,MnSbh

B Cold beam
Thermal beam
Hot beam —

Figure 1.5: The evolution of the flux of neutrons versus the wavelength (hence the energy) of
the neutrons depending on the moderator (The reactor and the neutron sources 2003).

For cold neutrons but also sometimes for hot neutrons (e.g. SPODI at FRM2,
Garching bei Munchen), the neutrons are guided towards the instrument following
the optical principle of total reflection for which, under a certain incident angle 6.,
the neutron wave will not be able to go through the reflective medium and will be
totally reflected. Neutron guides offer the possibility to further tune the neutron flux
by creating constructive interference between the reflected waves or by cutting the flux
of neutrons possessing a wavelength inferior to the cut-off wavelength A. (The reactor
and the neutron sources 2003).

1.2.1 Neutrons as a probe

Neutrons have some unique properties that allow us to probe matter. If we consider
the previously calculated wavelength and energy, we can see the energy of neutrons is
not only tune-able but also in the range of different dynamic phenomena in solids or
fluids, perfect for the study of structures at the atomic scale or for dynamic analysis,
when neutrons will be inelastically scattered by a phonon for example, the phonon
energy can be directly extracted from the energy of the phonons providing insight into
the atomic forces at play.

Neutrons are neutral, non-destructive, making them the perfect probe for the study
of membranes or proteins. Due to their absence of electrical charge, they can penetrate
deeply inside materials, possessing a low absorption coefficient with regards to most
elements, making it possible to study bulk materials or materials that would be too
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absorbent for X-Ray. Since neutrons interact with matter via the strong nuclear force,
their interaction with matter is different than how X-Rays interacts with matter. Thus,
they can be sensitive to elements that are invisible to X-Ray, e.g. Hydrogen.

Neutrons possess spins and magnetic moments and also interact with the unpaired
electrons in magnetic atoms. Neutrons are therefore sensitive to magnetic structures
and neutron scattering can yield information such as the density distribution of un-
paired electrons.

Activation and low flux are the main drawbacks of neutrons. It can be complicated
to work with some metals that could activate (Cobalt for example).

Neutrons cross-sections

Let us consider a monochromatic beam of neutrons, of energy E, scattering from a
sample that could be solid, crystalline or liquid (figure 1.6). We count the amount of
neutrons scattered by the sample with a detector in the directions (6, ¢), the detector
is assumed to be far from the sample. We define ® as the flux of incident neutrons,
i.e. the amount of neutrons per unit area per second, the area is perpendicular to
the direction 6, ¢ of the neutron beam. The result of the measurement of neutrons
that have interacted with the scattering system can be translated via three different
cross-section, cross-sections are given in barn units (1 barn = 107** cm?).

A

Scattered beam,
direction (6,0)

Incident beam, ¢
flux ©

Figure 1.6: Geometry of a scattering experiment, in polar coordinates.

The differential cross-section defined as:

do  (number of neutrons scattered per second into df2 in the di-

dQ ~ rection 6, ¢)/® d (1.8)
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The double differential cross-section, defined as:

22 (number of neutrons scattered per second into a small solid
b angle dQ) in the direction 6, ¢ with their final energy between (1.9)
E' and E' +dE") | ®dQdE’

The total scattering cross-section defined as:

(total number of neutrons scattered in all directions per

Ttot = second)/®. (1.10)

If one follows the logic behind the definitions of the cross-sections, one can derive

the following equations :
do > [ d’c ,
a =~ ) N\aqae )™ (L11)

[e.9]

do
Crot = — ]dQ2 1.12
o /all directions (dQ) ( )

The cross-sections are the physical quantities that are directly measured from the
experiment, that consist in counting the neutrons received per counting time in a
direction that is defined by the characteristics of the instrument and that can be chosen
by the user. If the differential cross section (1.8) depends only on an angle 6, one can
write :

T do
Otot = — 27 sin 0d6 1.13
w=| (113)

The experimental cross-section defined as above are valid for a single atom and do
not take account of the initial and final spin states of the neutron. It is now to the
scientist to link the output of the experience to the physical theories behind neutron
scattering.

1.2.2 Neutron scattering

Let us first consider a simple approach to neutron scattering with a system consisting
of a single nucleus, one can write the nucleus-neutrons interaction potential for a single
nucleus as V(7).

We can then derive the Schrodinger equation as follows:

2m

22 V()| wtr) = B0 (114)

where the first term corresponds to the kinetic energy and the second to the po-

tential energy, i.e. the nucleus-neutrons potential V(7). (r) is the eigenfunction of
the neutron. The general solution to the Schrodinger equation is given in the Born
Approximation (DWBA).The incoming wave is assumed plane:

¢i(r,w) = exp (—i(kx — wt)) (1.15)
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and the resulting wave is the sum of a plane wave and a spherical wave. The final
particle scatters in all directions in the form of a spherical wave.

exp (—i(kx — wt))

of(r,w) = exp (—i(kz — wt)) + f(0) (1.16)

The interaction potential is called the Fermi pseudo-potential given by Fermi to
quantify the bond between a nucleus and a neutron (Squires 1997):

B 2 h?

Vi) ==

bi(r) (1.17)

f(0) is the scattering amplitude and depends directly on the momentum transfer
q. It is defined as the Fourier transformation of the interaction potential V. One can
see that repulsive potentials result in positive scattering lengths.

My

~onn?

-
/

/ i exp —i(Gr)V () = —b (1.18)

f(0)

The scattering length b has been determined experimentally for each element and
can be found on the National Institute of Standards and Technology (NIST) website
(“Neutron News” 1992) and quantifies the scattering power of each element. Its values
depend directly on the spin state on the nucleus and on the isotopes. In contrast
with the scattering factor for X-Ray, the scattering length of neutrons does not behave
proportionally to Z but observes an unpredictable behavior.

It is interesting to know that the scattering length can be complex and that its
value can depend on the energy of the neutron. The imaginary part of the scattering
length quantifies absorption and for some elements with important imaginary scattering
length, the scattering of a neutron lead to the formation of a compound nucleus with
an energy close to the energy of an excited state. However we are mainly concerned
with elements whose scattering length is almost purely real and independent of the
neutron’s energy.

Following figure 1.6, the scattering energy is distributed over the surface of a sphere
of area 4mr?.

We must then neglect the following points: absorption, primary and secondary
attenuation of the beam due to multiple scattering.

For the scattering of a neutron of velocity v from a single nucleus, the number of
neutrons scattered from the sample that go through an area dS as defined in the figure
1.6 from (1.16):

b2
vdSh|? = vdSﬁ = vb*d) (1.19)

Likewise, from (1.15), we have the flux of incoming neutrons:

D =v|y* =v (1.20)

And from the definition of the final cross-section (1.10) we have :

2
do b dQ:b2 (1.21)

aQ - ®dQ
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Finally, from (1.13), integrating over the angle 6 gives:

Oror = 47h? (1.22)

47 80'
Otot = /O’S :/0 a—QaQ = 47b? (1.23)

To resume :

Simple approach to coherent and incoherent scattering

Let us consider a system that is constituted of one element with N nuclei, each nucleus
has a scattering length b, because of isotopes and/or nuclear spins, b varies randomly
from one nucleus to another. We have a system with i different values b; that each
occur f; times, so that the average scattering length of the system is:

b= fibs (1.24)
and the average square of the scattering length is:
= fib} (1.25)

We assume that our system is one of many systems that share the same amount of
total b;, as well as the same positions and momentum of the nuclei. The only difference
between these systems is the distribution of the b values, meaning that if nucleus j has
the value b; in one system, he will have the value b; in another system. Now, if we have
a very large number of nuclei, we can assume that the scattering length component of

the cross-section:
> bub; (1.26)

1%

is equal to the average over all the systems:

> bib; (1.27)

1%

Assuming that there are no correlation between any values of b;, one can write:

bib = (b)%, J' # J, (1.28)
bibi =02, j' =], (1.29)

Without going into the details of the differential cross-section, one can develop for
the scattering length:

Shbo= Y OF+YF = Y0 Y -0 (1.30)

i’ %

(23
i

i1’

Thereby defining the coherent and incoherent scattering cross-section:
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Ocon = 4m(b)?, Oine = 4m(02 — (b)?) (1.31)

From the equations above, we can see that coherent scattering gives rise to interfer-
ence due to correlations between the same nucleus (i=i’) and between different nuclei
(i=1") . It allows us to access the relative position of these atoms. Furthermore, we have
information on packets of atoms, dispersion relation of phonons or Bragg reflections.

Incoherent scattering is characterized by the absence of interference. There is no
relation between different atoms in the scattered waves; we track the self-motion or
self-dynamic of an atom.

Bragg’s Law

In the frame of this thesis, where the all the information will be extracted from the
analysis of Bragg peaks, it is mandatory to explain the physics behind Bragg peaks.

The lattice of our crystal is defined by three vectors @, g, c. Any vector v of the
unit cell can then be created by a linear combination of these three vectors:

T =@+ nsb + nsé  with (ny,na,ng) € 72 (1.32)

the volume of the unit cell is:
V=d(bxad (1.33)

An important tool of crystallography is the reciprocal space of dimension m™!,

defined by the three vectors a%, bx, ck:

- 27 - - 2 S 2 -
a*:VW(bxa, b*:%(ax@, c*:%(ﬁx ) (1.34)

From the De Broglie wavelength (1.5), it is possible to define the wavevector k of
neutrons (1.7). We can then define the momentum transfer ) as the difference between

the wavevector of the incoming neutron k and the wavevector of the scattered neutron
k'

Q=Fk—FK (1.35)
The figure 1.7 leads to (1.36) and illustrates the particular case of a Bragg peak.

If the momentum transfer Cj can be expressed as a linear combination of reciprocal
vectors, here graphically verified, a Bragg peak occurs for this value of Q.

» 4
Qnia = 2ksing = < sinf (1.36)

Q can be written as a linear combination of the reciprocal length between planes.

.2
G=n"l"_ withneZ (1.37)
dhkl
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dhkl

Figure 1.7: Geometry of the momentum transfer @ in reciprocal space, 20 is the scattering
angle.

Combining (1.36) and (1.37), we fall back on the most famous equation of crystal-
lography, Bragg law:

n\ = 2dhkl sin 6 (138)

To summarize, a Bragg peak result from the constructive interference between co-
herently scattered waves at discrete values of the incident angle 26 or of the momentum
transfer Cj on a specific set of crystalline planes. Cj and 26 are linked through (1.36).
The condition to have constructive interference is known as Bragg law and is given by
(1.38).

From (1.37), one can define the general reciprocal-space metric tensor for any crys-
talline system:

(ziﬂ; = 12 (a*.a*) + k2 (B.b%) + 12 (¢*.c*) + 2hk (a*.0%) + 2Rl (a*.¢*) + 2kl (bF.c)
(1.39)

g;j =h2a? + K202 + 12 ¢ 4+ 2hk a*.b* cosy* 4 2hla*.c* cos B* 4 2kl b*.c* cos o
(1.40)
(2;;)12 = AR? 4 BE* + CI? + Dhk + Ehl + Fkl (1.41)

Equation (1.39) can be simplified as (1.42) for a simple cubic system, defining the
interplanar spacing between the crystalline planes:

27 |d|
dpp = —= =
VIR VR

Moreover, for each peak, indexed by its hkl miller indices that specify the orientation
of the crystalline planes, the momentum transfer can be written as a linear combination
of reciprocal space vectors, for a cubic lattice:

(1.42)
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QZM = hak + bk + kck (1.43)

Inelastic scattering

One can also write for the momentum transfer:

hk?  hk2
e A (1.44)
2m  2m
We have elastic scattering if \Q| = 0, energy is not transferred (to or from the

material) in this case, we lose all dynamical information about the sample and study
the structural information alone.

For inelastic scattering, when |Cj| # 0, energy is transferred, given or received
from the sample. In that case we measure neutrons as a function of both energy and
momentum transfer. It can lead to a dispersion relation giving more insight in the
geometry of the phenomena that lead to the loss or gain of energy.

1.2.3 Intensity of a nuclear Bragg peak

Neglecting absorption, very weak for most of the elements, and considering only a non-
magnetic structure factor; the intensity of a Bragg peak I, as a function of its miller
indices hkl and of 26 can be written as:

Lue = A x |Fhkl|2 X Jhkl X L(Qe) X €Xp (_QW) (145)

where A is an instrument constant.

Structure factor

Fyip is known as the structure factor, it is given by:

Fog = Y bjexp (—2mi@Q.r50) (1.46)

=0

The structure factor is the summation of the contribution to the scattering energy
of each atoms at the position 77, of scattering length b; in our unit cell for a given Q.
The position of the atom 77, is given by:

170 = ;@ + y;b + ;¢ (1.47)

Debye-Waller factor

The position 7} of the atom j is not static but should be rather understood as the
instantaneous position of the atom. In a crystal, atoms vibrate around their equilibrium
position 7}y, we have:

75 (t) = rjo + u(t) (1.48)

23 David Simonne Chapter 1



Diffraction investigation in Nis_,MnSbh

@ = w(t) is the thermal displacement, accounting for thermal vibrations in the
crystal. These oscillations around the equilibrium position can be understood following
the model of a harmonic oscillator at low temperature, with discrete frequencies of
vibrations. The frequency of the vibrations, that increase with temperature, are linked
to quasi-particles named phonons. Another contribution to the thermal displacement
is the zero-point displacement, if one could lower the temperature of the crystal in a
perfect vacuum down to absolute zero, one would have expected the system to not
show any motion. However, quantum physics tells us that even at absolute zero there
is a probability for the atom to not be in at its equilibrium position, called zero-point
displacement. Moreover, the Debye-Waller factor also takes into account the static
displacement in the lattice that is linked to disorder. This will be discusses further in
chapter 2.

The exponential in (1.46) can be rewritten as:

exp (—2m’@.r}) = exp ( —27Ti@.(7“}’0 +u)) (1.49)

The average of this equation is given by:
(exp (—2miQ.7)) = exp (—2miQ.150) x (exp ( —2miQ.@) ) (1.50)

The second term of this expression can be expanded as the second order Taylor
series for exp zg with o = —2miQ.4 at zero, we loose the (27) for clarity:

(oxp (—iGai) =1~ (iGi ) — (@) o ((@ap)) (15

Since the displacement are random, the average of @@ﬁ is equal to zero. However
the average of the square of ().@ is non zero and can be further developed as:

@y ) =@ (w7 {eost) = 5 Q7 {w?) (1.52)
which leads to:
(oxp (—iGi) =1 2 Q% {w?) (1.53)

that corresponds to the first order Taylor series for exp xg with xg = % ¢ (u?) at
7Zero, we can write:

1 2 2 o 1 2 2
- @ (@) =ew (s @ () (1.54)

The final intensity contribution of the Debye Waller factor is the square of (1.54)
given by:

exp (5 @ (7)) (1.55)

The last two terms of (1.45), respectively jur and L(260) are the multiplicity of a
Bragg peak and the Lorentz factor. They will be studied in a section covering the
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instrument used for powder diffraction for they both relate more to the collection of
the data than to the theoretical intensity of a Bragg peak.

1.3 Magnetic neutron scattering

A bit of the standard model

The nucleons, i.e. the proton and the neutron are hadrons, composite particles that
are not elementary particles unlike the electron or the photon. More specifically, the
nucleons are baryons, hadrons composed of three quarks. The neutron is formed by 2
quarks down and one up quark and its final properties can be assumed to be approxi-
mately the properties of its quarks. The charge of the up quark is % and the charge of
the down quark is —%. The summation of these charges for the neutron is zero and is
the reason behind its name.

The force that is responsible for the cohesion of the nucleons is the strong interaction
force whose gauge boson is the gluon. Its range is of the fentometer, the size of an
atomic radius. Therefore, the strong interaction affects only the nucleus and confines it
together, being 137 times more important than the electromagnetic force on this scale.
The mass of the neutron is mostly due to the energy of the gluons.

The spin of both quarks is %h resulting in a half-integer %h spin for nucleons that
classifies them as fermions, obeying the Fermi-Dirac statistics. The Fermi-Dirac statis-
tics gives the distribution of the number of particles over the energy states in a system
in thermodynamic equilibrium. A famous result of this rule is the Pauli exclusion prin-
ciple that states that two fermions cannot occupy the same energy state (first written
for electrons by Pauli in 1925 then extended to all the fermions).

The spin of a neutron is represented by a vector whose norm can take two values,
—|—%h called spin up and —% h called spin down. It is a purely quantum concept,
commonly understood as an intrinsic angular momentum and associated to a spin
magnetic moment.

1.3.1 Magnetic moments
The magnetic moment of the neutron

The interaction of the neutron with matter is not only due to the nuclear force giv-
ing rise to nuclear neutron scattering (1.45), magnetic neutron scattering originates
from the interaction between the neutron’s spin with the magnetic moment of the un-
paired electrons in the sample, which can have an orbital contribution and/or a spin
contribution.

For a particle of charge ¢, mass m and spin angular momentum S , the spin magnetic
moment is given by:

. ¢z a
L. By SNy~ 1.56
Hn =95 -5 =17 (1.56)

where 7 is the gyromagnetic ratio, ratio between the observed frequency of the Lar-

mor precession of a neutron under an external magnetic field and the strength of the
magnetic field, it is also the ratio between the spin and the magnetic moment.g is the
g-factor, dimensionless, that depends on the particle.
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For neutrons, that have a zero charge, the magnetic moment results from the quarks

and is given by g = —3.826. One can also write:
mf:%?gzigmw:i—Lm&w (1.57)

where iy is the nuclear magneton:

. eh
Hn =

= 1.58
S (1.58)

The magnetic moment of the electron

We define a total angular momentum J for the electron, due to two different types of
rotation. The intrinsic spin angular momentum S is seen as a contribution from the
rotation of the electron around its own axis that was first deduced from experimen-
tal results. The orbital angular momentum L results from the cross product of the
quantum position operator 7 and quantum momentum operator p for and electron in
motion in its orbital, we have :

L=rFxp=h/Il+1), (1.59)
S =hy/s(s+1), (1.60)
J=hVj(+1) (1.61)

with the spin quantum number § and azimuthal quantum number L.

As seen in classical mechanics, a rotating charge creates a magnetic dipole. The
different angular momentum of the electron give rise to spin magnetic moment and an
orbital magnetic moment. The magnetic moment of the electron can then be defined
similarly to (1.56):

- e — —
iL = —grs—L = 7L, (1.62)
e = -
lg = — S =S 1.63
1% gs2me Vo, ( )
[ — —
U= — J=n~J 1.64
125} 9J2me Y ( )

or in terms of the Bohr magneton up = 2‘;2:, with gr =1, g, = 2.0023 =~ 2 and g,
the Landé factor:

pr = —pp\V I+ 1), (1.65)

ts = —2upy/s(s+ 1), (1.66)

;= —gsupV3i(j+1) (1.67)
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1.3.2 Magnetism in 3d transition metals and Heusler alloys

In our NiMnSb system, the magnetic moments is mostly on the Mn sites and also
slightly on the Ni sites (J Brown et al. 2010). The magnetic moment of each ion can be
first understood by discussing the formation of ions for transition metals. The Mn?*
ions have a tendency to form octahedral complexes in which the energy of the orbitals
are no longer degenerate but split into two sub-orbitals resulting from the interactions
between the ligand field and the orbitals of the metal center. The direct contact between
the ligand field and the d,2_,2 and d.» orbitals leads to electron-electron repulsion and
results in these orbitals, forming the e, subset, having higher energy. The lower t5,
subset is then constituted by the d,,, d,., d,. orbitals that suffer less electron-electron
repulsion. The energy of the crystal is split by a value A between two energy sub-levels:
tag and e,. These orbitals are not spherically symmetric Moreover, we talk about high-
spin/low-spin depending on the strength of the ligand field. Low spin occurs for a
strong A, the electrons will first occupy the lower energy t,, orbitals, with a minimal
amount of unpaired electrons. At high spin, the splitting energy is weak and the system
follows the behaviour of a degenerated free ion.

The contribution to the magnetic moments from orbital angular and spin momen-
tum can be written as the following with S the spin quantum number, % for each
unpaired electron:

psir = /4S(S+ 1)+ L(L + 1) (1.68)

For high-spin Mn?* with an electronic configuration [Ar]4s°3d°, the t,, sub-level is
filled first, with 3 electrons followed by the 2 electrons on the ey, giving a configuration:
t;’geg.

For electrons to have an orbital angular momentum contribution to magnetism,
its orbital must be able to transform into an exactly identical orbital of the same
energy by a simple rotation since the magnetic moment is directly linked to the angular
momentum by (1.62).

In an octahedral complex, we should have a triply degenerated ground term, i.e.
a T state or precisely the to, set of orbitals (d,., dy., dy.) that can be interconverted
by a 90° rotation. However, since the orbital shape in the e, subset are different, it is
impossible to convert by rotation an electron from one state to the other. Hence, an
electron in the e, subset set does not contribute to the orbital angular momentum and
is said to be quenched. In the free ion case the electrons can be transformed between
any of the orbitals as they are all degenerate, but there will still be partial orbital
quenching as the orbitals are not identical. Moreover, electrons in the T set do not
contribute to the orbital angular moment in special cases. In the case of Mn?t, we
have a ty, sub-shell filled with 3 electrons, an electron in the d,, orbital cannot by
rotation be placed in the d,. orbital as the orbital already has an electron of the same
spin. This process is also called quenching.

To resume, in Mn?*, we only have a spin contribution to the magnetic moment
due crystal splitting induced by the octahedral formation of manganese. This moment
is easily computer by simplifying (1.68), taken for L=0 and S:g as a prefactor of the
Bohr Magneton:

fts.am2 = /4S(S + 1) = V35 = 5.92u5 (1.69)
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For Ni?*, we have the electronic configuration [Ar]4s°3d®, or t®e? since Ni occupies
the tetrahedral holes of the system and a spin-only magnetic moment due to a quenched
t subset:

psnes = \/4S(S +1) = V8 =2.83up (1.70)

When it comes to Heusler alloys of the family Ni—2MnSb, magnetism is primarily
understood via the Bethe-Slater curve (Lazpita et al. 2011; Cardias et al. 2017) that
describes the difference in exchange energy in transition metals as a function of the
overlap between the d orbitals. One can understand the interactions of the transition
metals by a Heisenberg Hamiltonian model (1.71) (Baxter 1982) where .J;; is the ex-
change interaction between two Mn sites and s; the unit vector pointing in the direction
of the magnetic moment at a site i (I. Galanakis and Sagioglu 2011). In the case of
small overlaps of the d orbitals, ferromagnetic interactions tend to result whereas in
the case of large overlaps, anti-ferromagnetic ones will result. For very large overlaps,
the d orbitals will delocalize and a nonmagnet will result. Mn as an elementary system
is antiferromagnetic. However, in the well-ordered L2, structure, the distance between
two Mn is so large that they barely link directly. It is the interaction with the adjacent
Ni atoms that leads to an effective ferromagnetic interaction between the Mn spins.
But if a Mn sits on Z then there is a fairly strong antiferromagnetic interaction between
this Mn and the regular Mn neighbors on Y. This direct antiferromagnetic interaction
opposes the indirect ferromagnetic so that the effective couplings are weaker, and hence
the magnetic transition temperatures lowers.

Heff == _Zjijsisj (171)
i#j

1.3.3 Intensity of a magnetic Bragg peak
Magnetic form factor

A simple approach to the magnetic form factor is to understand it in a similar way to
the atomic form factors for X-Ray scattering. The scatterer are however not all the
electrons but only the unpaired electrons that contribute to magnetism. In the dipole
approximation (small q), for a unique magnetization direction, it is written as the
Fourier transform of the magnetization distribution for a single atom (Brown 2003).

M/m(r)eiq‘rdr =Mf(q) (1.72)

M is the vector form factor and gives the magnitude and direction of the moment, m(r)
is normalized over the volume of the atom and gives the value of the magnetization at
a point designed by r. In our case, the magnetization arises from electrons in a single
open d shell, the magnetic form factor can be calculated from the radial distribution
of the electrons in that shell.

In the dipole approximation, we can write the magnetic form factor as the following
with (jo(s)) and (j2(s)) functions of q, describing the radial distribution of spin and of
current densities:
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f(@) =28 Go(9)) + L (Gola)) + (j2(q))) (1.73)

For 3d electrons in ions, an analytic approximation of (jo(s)) and (jo(s)) integrals
is given by Brown (2003):

(jo(s)) = A exp(—as®) + B exp (—bs®) + C exp (—cs?) + D, (1.74)

(ja(s)) = (A exp(—as®) + B exp (—bs®) + C exp (—cs’) + D) *, (1.75)
) _ 494 _ sing .

with s = g v A (1.76)

The coefficient have been determined and are given on the ILL website. A detailed
model for our system has been given by G. E. Bacon and Plant (1971) in which the
magnetization distribution is given by the sum of the atomic magnetization over the
magnetic atoms:

fila) = 1i[(Go(a))ibi(i2(0))i + aiA(q){ja(q))i] (1.77)

where (j0(q))i, (j2(q)): and (js(q)); are the free atom form factors for i = Ni or Mn,
[4; is the magnetic moment associated with the atom i and b; the fraction of the moment
due to orbital motion in the dipole approximation. The g-factor g; = 2/(1 + b;). The
coefficient a; measures the deviation of the distribution from spherical symmetry, we
have v = %(ai + 1), the fraction of magnetic electrons in the e, orbitals. Finally :

R + k4 1) — 3(R2K? + K21? + 12h?)
(h2 + k2 + 12)?

A(hkl) = ( (1.78)
It was found in the same work that the contribution of orbital motion to the magnetic
moment of Mn in NiMnSb was very small and that the moment on Ni is too small to
determine an orbital content. Therefore, in the frame of this thesis, it is sufficient to
have a simpler approach in which we assume the orbital moment to be quenched due
to the energy of the crystal field, we consider spin-only scattering:

f(a) =25 {jo(q)), (1.79)
(1.80)

The variation of f(q)? as a function of the momentum transfer q are given by (1.8).

Comparison with nuclear neutron scattering

To resume, the neutron is a spin % particle that carries a magnetic dipole moment of
1.913 nuclear magnetons. Magnetic neutron scattering originates from the interaction
between the neutron’s spin and the unpaired electrons in the sample (the interaction
between the neutron’s spin and the nucleus’ spin is neglected). We have two contri-
bution to the sample’s unpaired electrons’ magnetic dipole: the intrinsic spin dipole

29 David Simonne Chapter 1



Diffraction investigation in Nis_,MnSbh

1.0

— Ni 2+
0.9 1 Mn 2+

0.8 1

0.7 A

0.6 1

0.5 A

0.4 A

0.3 A

0.2 A

0.1 A

0.0 T T T T T T —— T T
0 1 2 3 a4 5 6 7 8 9 10
4nsin®/A

Figure 1.8: The squared magnetic form factor for Mn?* and Ni*t in the dipole approzima-
tion.

moment and the orbital magnetic dipole of the electron. The strength of this mag-
netic dipole—dipole interaction is comparable to the neutron—nuclear interaction which
allows us to see the effect of magnetism with the same neutrons that are used to study
the structure and dynamics of materials by having both a nuclear cross-section and a
magnetic cross-sections (for magnetic atoms only).

To continue the analogy, the intensity of a magnetic peak must also be corrected for
the Debye-Waller factor, the Lorentz factor and, for powder diffraction, the multiplicity
of the peak. The intensity of a magnetic Bragg peak I,,,4 for a momentum transfer q
is given by G. Bacon (1975):

2mc?

Imag(q) = A( e’ ) | Fonag ()2 X i % L(26) x exp (—2W) (1.81)

where A is the same instrument constant as in (1.45), contributing to both the nuclear
and the magnetic intensity of a Bragg peak. The value between the parenthesis is the
electron neutron coupling constant equal to —0.27 x 10'?cm (Lynn 2012). The magnetic
structure factor |F,,q,(q)]? is generally given by:
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mag ZT/ ezq qu X ](Q> X (ﬂa (182)

—

q

7 (1.83)

with ¢ =

M;(q) is the vector form factor of the jth ion located at the position r; in the
unit cell. We have a triple cross-product due to the vector nature of the dipole-dipole
interaction between the unpaired electron and the neutrons.

Often, the atomic spin density is collinear, for each point in the electron’s probabil-
ity distribution, the direction of the atomic magnetization density is the same. In this
case, the direction of the vector form factor does not depend on ¢, and the form factor
is written with f(q), Fourier transform of the magnetization density as seen before in
(1.72). If one was to compare (1.8) with the dependence of the atomic form factor
for X-Ray, one would notice that the magnetic form factor decreases faster than the
atomic form factor, this is due to the unpaired electrons being further from the atom
than the other electrons. Hence, the neutron magnetic intensity of a magnetic Bragg
peak is only noticeable at low ¢, whereas the neutron nuclear intensity is constant with
q (the scattering length not depending on q). In our system the magnetic structure is
collinear, the moments in the ordered state pointing along a unique direction 7 in the
structure, we consider that the magnetic moments are only from Mn?* with jip,2+ the
average value of the moment in the thermodynamical equilibrium, we can write:

Z n;e 1q T

the sum is over all the magnetic atoms in the unit cell (here Mn?*t), n; quantifies the

sign of the magnetic moment of the atom j (+1). In the absence of an applied field
and for a cubic system, we can write the average of the orientation factor {( 1 — (g.77)? )
over all domains as % Finally, we have:

2

| Fnag(0)]* = (1= (@) ){pearmz+) fipne+ (g (1.84)

’Lq T4

(1.85)

2
| Frnag (@) = 3 =iz ) Frme+ (g

Above the magnetic ordering temperature T, the intensity of the peaks is purely
due to nuclear scattering. However, for temperatures below the ordering temperature;
wee see both magnetic and nuclear neutron scattering. For unpolarized neutrons, the
nuclear and magnetic intensities simply add.

For a ferromagnetic regime, the Bragg peaks for magnetic and nuclear scattering
are at the same position since no magnetic superlattice arises. Well above Ty, in a
paramagnetic regime, the magnetic scattering does no simply disappear but rather
contributes to the background as diffuse scattering. This intensity has been derived by
G. Bacon 1975:

2 ~e? 2
Ipara,diffuse(Q) = _A( ) Mgfff<Q)2 (186)

3 2mc?
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For temperatures in the vicinity of T, we still have short-range magnetic order in
the lattice and a magnetic contribution to the Bragg peaks.

1.4 Powder diffraction

Powder diffraction can be done by X-Ray or neutrons, and allows a quick obtention
of neutron diffractograms. We will focus on how to guide and detect neutrons. Both
instruments that have been used to provide the data have recorded powder diffrac-
tograms by using a similar geometry. Nevertheless, differences exist with for example
the absence in 3T2 of the long neutron guide used in SPODI (figure 1.9), allowing
large take-off angles that result in finer peak widths. First neutrons are guided from
the reactor towards the sample via neutrons guides. The neutrons are guided by total
reflection, i.e. if the incident angle is lower than a known angle 6., the beam is totally
reflected. In the Institute Laue Langevin (ILL) in Grenoble, France, the guides are
made in nickel-coated glass, utilizing the isotope °®Ni of high scattering length. The
guide also eliminates some of the gamma radiation from the reactor thanks that travel
straight and go through them, into heavy concrete shielding. Moreover, not all the neu-
trons successfully travel through the guide since for neutrons, the reflectivity n depends
on the wavelength on the neutron, allowing one to select specific wavelengths. Before
arriving onto the sample, the neutron beam goes through a first collimator (divergence
aq), focusing the beam on a monochromator. Choosing a specific angle of incidence
between a single crystal and the incident beam by rotating the single crystal provides
a monochromatic beam, understood by Bragg’s law (1.38). The wavelength can be
modified by choosing a specific set of Miller indices (table 1.1). A filter can be used
additionally to prevent shorter wavelength such as % or % that can be generated since
they are multiple of A to hit the sample. The neutron beam then goes through a second
collimator (divergence aw) before hitting the powder sample. The scattered neutrons
are finally collected by a detector array, usually constituted of *He tubes with fixed
collimators (divergence a3) so that the neutron beam is collimated and then counted.
For both instruments, the multidetector rotates to cover a wider range of q.

The collimators are Soller slits, widely used for both X-rays and neutrons. Soller
slits are a set of straight slits that absorbs the misdirected radiation, they are charac-
terized by their number of blades and their heights (Bewer 2012).

Monochromator Collimators Detector array

Take-off angle: 155° «a; = 20 80 position-sensitive He? tubes
Ge(551) : 1.548 A ay = 25 angular range 20 = 160°

Mosaicity : g = 20" ag = 10’ effective height: 300 mm

Table 1.1: SPODI technical data (Hoelzel, Senyshyn, and Dolotko 2015).

The powder sample are constituted of crystallites,i.e. very small crystals. Powder
diffraction is preferred to single crystal diffraction when a single crystal is unavailable.
Many materials are studied via powder diffraction; drugs are a common example in
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Figure 1.9: Scheme of the instrumental setup used for neutron diffraction in SPODI, with
three soller slits collimators, a single crystal monochromator and a multidetector.

which the crystallites can be in the form of a pellet. A good sample must be composed
of randomly oriented crystallites to represent all the possible orientations (otherwise,
preferred orientations will occur and affect the quality of the data), and have a size
between 1 and 10 pm.

Due to their neutral charge, and to the fact that neutrons are non-ionizing, the
most common way to detect neutrons is through its reaction with another element
present in the detector. Gas-detectors work with ionization chambers, condensers with
the space between two metallic plates filled by He?, which follows the reaction:

*He 4+ 'n — *H+p +0.77 MeV (1.87)

The emitted particles are slowed down by the gas and produce electron-ion pairs.
the charges are then collected on the metallic plates and the current can be measured
(Oed 2003). However if one works with X-rays, one must shield the detector from the
photons that do not result from this reaction but rather are a product of the reactor
or else to avoid noise and high background. It is possible to discriminate between the
energy of the photons and the neutrons that differ from several order of magnitude.
Multi-detectors are filled with a quenching gas such as a mixture of xenon (Xe) and
methane (CHy).

Multiplicities

For powder diffraction, where crystallites are randomly oriented, all the symmetry-
equivalent reflections that have the exact same interplanar spacing d scatter with the
same angle 6 resulting in a diffraction pattern in the form of Debye-Scherrer rings (figure
1.10). To obtain the final diffractogram, one must only integrate along the diffraction
angle. It is not possible to measure the intensity of each hkl peak individually.

The multiplicity of a peak is the number of equivalent reflections due to symme-
try elements for an hkl peak, it must always be taken into account. Its value differ
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between low and high symmetry reflections, for example in a cubic crystal lattice, the
multiplicity of a peak can be up to 48 and the multiplicity of the (111) peak in a cubic
system is 23 = 8, where each miller indices can take the value 1 or -1.

Incident beam

Detector

Figure 1.10: Debye Scherrer Rings

Lorentz factor

The Lorentz factor normalizes the amount of reflections that are counted as a function
of the scattering angle, it is derived from the experimental setup and is independent of
the sample. It results from three different phenomena.

First, a factor of ﬁ is due to the rocking scans necessary to entirely cover the
surface of a node of the reciprocal lattice that have a width and cannot be seen as
zero dimensional points. As seen in figure 1.10, in powder diffraction, the Debye-
Scherrer rings that result from the orientation of the crystallites being equally likely,
for a specific dpy;, will cover more of the detector’s surface for high and low angles than
for angles approaching 90°. Thus, the probability of the crystallites to have a plane
in the correct orientation for Bragg scattering is proportional to cos. Moreover, for
a distance R between the sample and the detector, we have R sin 26 the radius of the
Debye-Scherrer rings at the position 6. Hence, the portion of the diffraction cones that
will be measured by the 2D detector is dependant on ﬁ.

The full derivation of (1.88) can be found in Als-Nielsen and McMorrow 2011, the
final equation is given by:

cos 8 N 1
sin 20sin 20 sin 0 sin 26

L(6) = (1.88)

X-Ray diffraction

Laboratory X-Ray powder diffractometers commonly use Cu-Ka radiation and a Bragg-
Brentano geometry for which the incoming beam diverges onto the sample and the
diffracted beams is focused on the detector, both beams are at a fixed radius from the
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Figure 1.11: Lorentz factor in the angular range of SPODI.

sample position. Focussing the diffracted beam leads to better resolution. It is then
possible to either fix the source and move the sample and detector by respectively 6
and 26 or to fix the sample and move the source by respectively —6 and 6. This second
configuration is more adapted to liquid sample for example.

The advantages of using neutrons over X-ray in general are summarized in the
table 1.2. For powder diffraction, the main differences hold in the scatterer, in the
necessity to account more thoroughly for absorption and in the creation of polarization
corrections while using X-ray (which is only possible for the spin in the case of neutrons,
no polarization factor for neutrons) at a synchrotron (due to how the X-Rays are
emitted). Laboratory sources are unpolarized and in the case of a Bragg-Brentano
geometry where the incident beam constantly covers the entire sample the absorption
correction is also negligible. The structure factor dependence on ¢ can be seen in the
atomic form factor that measures the scattering power of an isolated atom:

F(@) = ro / p(7) exp (=i 7T, (1.89)
. e’

with o = @ (190)
with 7o the Thomson scattering length, e the charge of the electron, m the mass of
the electron and c the speed of light. Magnetic neutron scattering depends also on q
but the intensity falls off faster than for X-ray for which we do not consider only the
unpaired electrons but the whole electronic cloud around an atom of atomic number Z.
The structure factor is therefore also proportional to Z. Finally, the angular resolution

of X-ray diffraction is higher than for neutron diffraction.
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Neutrons X-rays
Dependence on ¢ Constant with q Decreases for high q
Sample size Huge, em? Small, between 0.1 and 1 mm
Availability Only at nuclear facilities Lab and synchrotrons
Ability to discriminate neighbouring elements Yes, depending on b No
Ability to discriminate isotopes Yes No
Ability to "see” light elements Yes No
Radiation damage No, but activation Yes, but no activation
Possibility to investigate magnetic structures — Yes Yes, in development
Acquisition time Long due to low flux and low efficiencies Fast, possibly ultrafast (sub second resolution)
Resolution Low A# resolution Moderate Af resolution

Table 1.2: Summary of the main perks and disadvantages of using neutrons or X-ray for

diffraction (Borfecchia et al. 2013).
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Chapter 2

Data correction in neutron
diffractometers

Introduction

Prior to data analysis, the data must be collected perfectly. For a diffraction ex-
periment, the first step is to find which radiation to use; neutrons or X-Ray. Then,
according to the sample (bulk or powder), to the geometry of the diffractometer and to
the results one expects from the experiment; the parameters of the instrument (incident
wavelength if tunable, counting time, ...) must be chosen. If the quality of the samples
is not good enough, if a parameter is not well defined, wrong or if the instrument was
not well setup before the collection of the data; it is possible for the quality of the final
data to be affected.

During previous attempts to solve the ordering mechanism in the Niy_,MnSb sys-
tem (Neibecker 2018), problems linked to the diffractometer arised and no satisfactory
conclusion could be drawn from the analysis due to the imprecision of our measure-
ments.

It has been shown that it is possible to fit each or multiple Bragg peaks of a neutron
diffractogram by a model (Rietveld 1969). In our case, the novelty is that this model
is first used to determine new corrections for the diffractograms obtained by Neibecker
before the refinement and the extraction of information such as the lattice parameter
or the thermal displacement from the resulting curve. Information that should finally
lead to an understanding of the ordering process in our system.

This chapter is first concerned with how the data was obtained and then with how
one might be able to apply different types of correction to tackle the diffractograms’
problems without further damaging their quality; along with a short presentation of
our samples. The sample preparation and data collection were performed by a former
PhD student (Neibecker 2018) and this thesis is a continuation of his work.

2.1 Data overview

2.1.1 Sample preparation

As seen in Neibecker (2018), the samples were prepared by induction melting and tilt
or suction casting of high-purity elements under Argon atmosphere. After casting, all
samples were subject to a solution annealing treatment at 1173-1273K for 48-72 h
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depending on the alloy system in order to remove segregation effects from casting. All
additional heat treatments and sample preparation procedures were performed on the
solution annealed and quenched bulk ingots.

All ingots have been checked for their actual composition using Wavelength-Dispersive
X-Ray Spectroscopy (WDS) or Energy-Dispersive X-Ray Spectroscopy (EDS). WDS
measurements were performed in collaboration with the group of Ryosuke Kainuma at
Tohoku University, Japan. EDS measurements have been performed at the Staatliche
Materialpriifamt fiir den Maschinenbau at Technische Universitat Miinchen, Germany.
For EDS and WDS analysis, thin plates have been cut from the solution annealed
ingots that have been mirror-polished in order to provide an adequate surface quality
for the measurements. The measured compositions for all samples prepared and used
in this thesis is given in the table 2.1.

Compound  Ni (at. %) Mn (at. %) Sb (at. %)

Nil.05MnSb 34.02(25)  33.62(19)  32.36(27)
Nil.25MnSb 38.15(27)  31.70(11)  30.15(25)
Nil.50MnSb 42.53(23)  29.19(18)  28.29(18)
Nil.60MnSb 44.16(19)  27.93(11)  27.91(14)

) (21)

Nil.75MnSb  46.50(57 27.01(50) 26.50
Table 2.1: Sample compositions as determined by WDS/EDS, taken from Neibecker (2018).

The values given are averaged over 8 randomly selected measurements points on the
sample in the case of WDS analysis and 5 randomly selected measurements points in
the case of EDS analysis. Additionally, all samples have been checked for homogeneity,
i.e. the absence of phase decomposition, using Scanning Electron Microscopy.

2.1.2 Objective discussion of data quality

Throughout this thesis, we used distinct sets of data that originated from the char-
acterization of our samples in two different neutron diffractometers. Prior to neutron
diffraction, X-Ray diffraction (XRD) was performed to pre-characterize the samples
and thereby assert their purity and quality. After having performed XRD and con-
firmed the quality of the sample, the next step was to apply for a beamtime in a large
scale facility such as the Laboratoire Léon Brillouin (LLB) in Paris or the Forschungs-
Neutronenquelle Heinz Maier-Leibnitz (FRM II) in Garching bei Munchen. For neu-
trons, one must go to a reactor simply because there exist no such thing as a laboratory
neutron diffractometer. The demand being high, it is mandatory to have a project with
a clear purpose and carrying innovation in its field.

Neutron powder diffraction

To clarify the mechanism of the C1,-L2; phase transition, in-situ Neutron Powder
Diffraction (NPD) was performed at various temperatures in Paris at the 3T2 diffrac-
tometer at Laboratoire Léon Brillouin (LLB). After the 3T2 data-sets revealed the
need to be corrected, room temperature high resolution diffraction was performed at
SPODI, a diffractometer at the FRM II reactor, in Garching bei Munchen. Hence, this
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second set of data provides us with an optimal spectra for room temperature analy-
sis, that can be used to correct the 3T2 diffractograms by comparing with the room
temperature diffractograms.

High Resolution Powder Diffractometer 3T2

a, collimator (107, 14", 21°)

) Meutron guide
@ Monochromsator

| Ge (335) curved monochromator ‘

 Optimal callimation
@ @ Sampie table
i arr

2350mm

(a) 3T2 (b) SPODI
Figure 2.1: The geometry of the 8T2 instrument (figure 2.1a) is similar to the geometry of

SPODI (figure 2.1b) both using three soller collimators and a single crystal monochromator
with a large take-off angle.

For the in-situ temperature dependent measurements performed at 3T2, the in-
strument operates with a multidetector (figure 2.1a). The multidetector, composed of
individual detector each one preceded by soller slits rotates to cover a wider angular
range. For 3T2, the multidetector consists of 52 single detectors tubes each covering a
span of 5.4° and separated by 2.4°. Each detector then produces a short diffractogram
covering 5.4°. The final diffractogram can then be drawn by summing the intensity of
each detector on their individual 6 range. At SPODI the multidetector covers a range
of 160°, they are 80 individual detectors each covering a range of 160/80 = 2°. The step
width can be change depending on the experiment but in this case SPODI operated
with a step width of 0.05° by performing 40 steps. 3T2 also operated with a step width
of 0.05° by performing 108 steps. Each detector is also characterized by an efficiency
coefficient and a shift coefficient that are both computed by the instrument responsible
after calibration, they aim to have a perfect overlap between the neighbouring detec-
tors. These coefficients will be discussed in the next chapters, since they can allow one
to correct the efficiencies and positions of the detectors if a problem arise.

If both instruments are part of state of the art facilities, one can clearly notice
a difference in the quality of the data between SPODI (figure 2.2) and 3T2 (figure
2.3). This could partly be due to the instrument, SPODI purposely designed for high-
resolution data collection for Rietveld refinement using a very large monochromator
take-off angle of 155°, a 5 m monochromator—sample distance and Soller collimators,
resulting in narrow peaks at high q. Moreover, the width defining the domain of
integration for the intensity of the raw data along the Debye-Scherrer lines uses a
260 dependent variable width accounting for vertical beam divergence effects to avoid
asymmetric broadening at low and high scattering angles, while still utilizing the full
width of the detector at medium scattering angles (Hoelzel, Senyshyn, and Dolotko
2015).

Two main problems arised from the analysis of the diffractograms. There is a clear
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intensity divergence from SPODI (illustrated in figure 2.2 and figure 2.3), too important
for middle q. Moreover, the overlap between the neighboring detectors is wrong for
3T2 (figure 2.4 and figure 2.5). The experiment at LLB using 3T2, which is also a high-
resolution diffractometer, might have been subject to calibration problems, explaining
why it seems that the intensity is too intense in the middle of the diffractograms for
medium ¢. Thus resulting in wrong overlaps between neighboring detectors. The
SPODI data was collected to correct the 3T2 data., correcting the intensity problems
at medium ¢ and the overlap of the neighbouring detectors that needs to be equal.

The 3T2 data must be corrected to not only be qualitative but quantitative and
relevant in a scientific analysis. It is important to be aware of the quality of the data
and to proceed to corrections that can be theoretically justified.
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Figure 2.2: SPODI data at room temperature for Nij o5 MnSb as a function of the scattering
angle 26.
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Figure 2.3: LLB data at room temperature for NijosMnSb as a function of the scattering
angle 20.

2.2 Models and refinement methods for neutron
diffraction

For each diagram, the data was drawn for each one of the 52 detectors and plotted
along the others (figure 2.4) instead of plotted together (figure 2.2 and figure 2.3). The
intensities and the position of the peaks seemed also to differ between the neighboring
detectors (figure 2.5), even after having applied the corrections given by the instrument
scientists that clearly did not suffice in our case. It was decided to correct the data by
using least squares method (LSM) on the diagrams, assuring us with good statistics
and allowing us then to directly extract information such as the lattice parameter, the
individual structure factor for each (hkl) peak and the Debye-Waller factor from the
resulting models.
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Figure 2.4: LLB data at room temperature for NijosMnSb as a function of the scattering
angle 20, drawn for each detector.
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Figure 2.5: LLB data at room temperature for NijosMnSb as a function of the scattering
angle 20, drawn for each detector. The difference when neighbouring overlap can be clearly
seen in this region of medium q.

As mentioned before, two main problems had to be covered, the intensity divergence
from SPODI (illustrated in figure 2.2 and figure 2.3), too important for middle ¢, and
the false overlap between the neighboring detectors. But first, we had to define a model
for the peaks that could be applied to all the peaks in each diagram. Creating a single
model that could then be applied to each diagram with different parameters (taking
into account for example that the lattice parameter is different at high temperature
than at low temperature) allows one to compare all the diagram in a single programs
and thereby finding corrections with the high statistics. To compute precise models
throughout the thesis, it was necessary to dive into programming and into regression
analysis. In this section, we will first discuss the programming language that was used
and then the validity of the different models.

2.2.1 Python, a modern language adapted to science

Since the first publication by Rietveld (1969) that gave its name to the method known
as Rietveld refinement; model fitting and data refinement have proven to be powerful
scientific tools now commonly used in the crystallographic world. Programs have been
developed by the main actors of material science to first help users of large scale facilities
but also to provide detailed data analysis software such as the FullProf suite, developed
for Rietveld refinement of both neutron and X-Ray powder diffraction by scientists from
the Institut Laue Langevin (ILL) in Grenoble, France (Juan Rodriguez-Carvajal 1998).

During this work, an emphasis was put on understanding exactly how process mod-
eling and model refinement worked and on creating a program that could provide the
information sought by the author rather than using existing software such as Full-
Prof. This proved to be at first time-consuming but mostly enriching and could not be
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avoided since models had to be created to correct the diffractograms in the first place
before utilizing the same model fitting routine to draw fitted curved that then provided
us information crucial to further satisfactory analysis. Furthermore, it is important to
be able to develop non-standard programs for non-standard problems.

Other famous programming languages used in physics could have been used such
as MATLAB and Octave. However, due to a previous experience in data fitting using
Python (Wolff et al. 2019) and to a desire of the author to develop computer skills in
this language, Python 3.7.4 was used for this project.

Terminology and structure

Python is a powerful, object-oriented, programming language receiving increasing at-
tention in science due to its many excellent libraries applicable to mathematics such as
NumPy (Van der Walt, Colbert, and Varoquaux 2011), SciPy (Jones, Oliphant, Peter-
son, et al. 2001), Matplotlib (Hunter 2007); to data analysis with Pandas (McKinney
2010) and Seaborn (Waskom et al. 2014) or to the creation of graphic user interfaces
with TKinter. Python is a language that is object-oriented, meaning that one can
easily create flexible tools adapted to his own field of work. Moreover, the community
is very active and new libraries are constantly being created, sometimes even by in-
strument scientists of large scale facilities (Nelson and Prescott 2019; Wolff et al. 2019)
that also inspired this work.

The language was installed using the anaconda distribution that also contains the
main Python libraries for data analysis (NumPy, SciPy, Pandas) as well as Jupyter-
Lab, a rich, web-based development environment allowing a flexible use of Jupyter
notebooks, images, data-sets, etc... (figure 2.6). The interface is clean and customiz-
able: one can create its own environment and rapidly switch between different Jupyter
notebooks. Each notebook is divided in cells and works with a Kernel stocking the
notebook’s namespace and turning busy when a program is running. One of the best
feature of Jupyter is that one can create many different cells leading to dynamic work-
flow for scientific computing (Nelson and Prescott 2019). An extensive documentation
of this software can be found here.

Python has a very specific way of organizing its content that must be followed if
one wants to create his own Python library, one must understand the terminology used
in Python.

A module is a single file of python code that is meant to be imported in the main
script via the import function. It is a class with many different objects such as methods
(functions specific to an object) or attributes that can then be called from this module.

A package is a collection of python modules under a common namespace. In prac-
tice one is created by placing multiple python modules in a directory with a special
__init__.py module.

A script, if using Jupyter, can be understood as a single notebook that is divided
in two parts. First the necessary modules are imported from different packages with
their own methods and attributes, then some python code leads to direct results. A
complex script can also be seen as an application.

A class defines an object and contains methods (function acting on an object) and
attributes that are specific to the object.

A published package can then be called a library if its purpose is to be shared and
used by many applications. It provides some generic functionality that can be used by
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specific applications. A library can contain multiple packages or even only one module.

A package called Diffraction was created to structure the different programs that
were used and to give tools that will hopefully be reused in the future. This package
can be found in a repository on the GitHub of the author, a README.md contains the
description of the different modules. Parallel to the thesis, the author followed an online
programming course for Python that can be found here (in french) in a desire to learn
how to properly organize python scripts, modules, classes, how to describe and define
every variable or object according to standards. It is mandatory for a scientist to be
up to date in the newest scientific methods and this includes programming languages
as well.

Programs

The different modules that were written allow us to proceed to the fitting and refine-
ment of the neutron powder diffractograms from both 3T2 and SPODI. Each diffrac-
togram is then stored as an object defined by a class, the methods working on this
class provide us with the respective (hkl) indices and intensities of the Bragg peaks
after background substraction, the thermal displacement, the density of states (DOS)
of phonons, the lattice parameter, the theoretical magnetic and nuclear structure fac-
tor computation depending on the ordering of the structure and more that will be
detailed in the next chapter. Before extracting these information, the first purpose of
the program is to provide corrections for the 3T2 diffractograms.

The modules are to be applied to this project alone and would need modifications
for any extended use but could possibly be extrapolated to other data-sets. Some
limitations are of course the lack of data for materials other than cubic Heusler alloys,
it could be possible to create a database and to further develop the package but free
programs available online such as FullProf are more developed and much more designed
for a larger public use. However, it is important to underline that self-written programs
will always be needed for problems that are too specific such as the one encountered
in this thesis and that in a world that keeps on developing its computer tools and is
mandatory to have a good understanding of their working process.

2.2.2 Whole pattern refinement in neutron powder diffraction

Refinement in crystallography and here specifically in Neutron powder diffraction is
the process of fitting a curve to a diffractogram. A model is first defined based on the
understanding of the material by the crystallographer, it is then refined by tweaking
the numerical value of each parameters to improve the resulting curve drawn according
to the model and fitting the observed curve (here a diffractogram). Is it mandatory
for the crystallographer to have a good understanding of both the parameters of the
model and the system at the origin of the observed results to assess the theory behind
the model and to make sure that it is as accurate as possible. It is usually possible to
fit a model by using many parameters but one should not use more parameters than
needed, be able to give a scientific explanation of the origin of each parameter and
explain why it has been used in his work.

As mentioned before, refinement for neutron powder diffraction was first derived
by Rietveld (1969) and turned out to be a unavoidable tool for materials science in the
decades following the publication with publication describing the process for neutron
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Figure 2.6: JupyterLab allows one to combine raw Python code, Jupyter notebooks, images,
windows terminal, Markdowns(.md) and notebook text files (.txt) within a customizable in-
terface.

powder diffraction (Van Laar and Yelon 1984) and X-ray powder diffraction (McCusker
et al. 1999). It is important to differentiate refinement and structure solving. Indeed
Rietveld refinement works for fitting powder diffraction profiles combined with a solu-
tion of the crystalline structure, but it is the crystallographer than first needs to solve
the structure and that then needs to work with the output of the refinement, i.e. the
refined parameters, to extract information from the curve such as the Debye-Waller
factor or the occupancies. This can be done with programs as well, some even combine
structure solving and refinement. We will first give insight into the model that was
used for the fitting of the 3T2 and SPODI diffractograms and then for refinement. A
model in NPD is defined by many parameters that follow either empirical results or
thoroughly defined parameters (e.g. the peak width). The different parameters that
were used to create valid models will now be explained in details. Then, some insight
will be given into the different statistical methods that can be used for the fitting
routine such as least squares method.

Peak shape and peak width

The first step in determining which model to use is to know which peak shape one
wants to use to model the Bragg peaks and the reasons behind peak broadening. The
intensity of a Bragg peak has been derived before (1.45). Theoretically, a Bragg peak
indexed by three Miller indices (h,k,]1) for a perfectly ordered, pure crystalline system
should have the form of a Dirac delta function infinitely thin and nonzero only for its
Q value equal to the norm of a reciprocal space vector defined by (1.43). However,
both the crystal structure and the instrument affects the distribution of the intensity
around the peak position. It is thereby possible and of interest to extract information
on the crystal structure from the peak shape.

The shape of a diffraction peak on a diffractogram was first accepted to be that of
a Gaussian (Rietveld 1969; Van Laar and Yelon 1984) of position pu, full width at half
maximum (FWHM) H, deviation o and peak area A. The peak area, i.e. the integrated
area under a peak is constant regardless of the peak shape and is proportional to the
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intensity defined in (1.45). Today, different peak shape are utilized; Lorentzian, Voigt
and pseudo Voigt are the most popular examples.

The following table gives the equations at the source of these peak shape. The
Gaussian function is probably the most famous. The Lorentzian function is also com-
monly seen in statistics. Both functions are describe a symmetrical distribution but
the Lorentzian is slightly larger at the tail than the Gaussian. It is possible to derive
the convolution of the two functions, i.e. the Voigt function that can be approximated
by the summation of a Lorentzian and a Gaussian: a pseudo-Voigt.

. o 2
Gaussian Ax —L — M}

~ 5= X exp [ 553

: 1 w
Lorent21an A X ;m

Pseudo-Voigt A x [a L (20 — 26y) + (1 — a) G (20 — 26,) |

Table 2.2: The three peak shapes commonly used in powder diffraction and the equations
ruling their distributions.

During this work, a Gaussian peak shape is used for it describes more accurately the
observed distribution of the peak intensity, more centered than for a Lorentzian. The
peak shape is the result of the convolution of the neutron distribution, the monochro-
mator mosaic distribution, the transmission functions of the Soller slits collimators, and
the sample shape and crystallinity. If these distributions do not all follow a Gaussian
distribution (e.g. the collimation functions are triangles), it is a result of the central
limit theorem that their convolution product follows a Gaussian distribution (Rietveld
1969) as shown in figure 2.11. This result in valid for neutrons due to low resolution
that does not allow one to see inherent peak shapes, more visible with X-Rays for
which the resolution is superior.

A Voigt or pseudo-Voigt function could have been used but since the Gaussian
approach did not show limitations at high angles in our project and since the pseudo-
Voigt is harder to compute, the Gaussian profile was kept.

The diffractograms issued from 3T2 and SPODI both cover a wide range of theta.
gmax being inversely proportional to the incident wavelength, since Agpopr = 1.548 A
and \spo = 1.225 A, the diffractograms of 3T2 will exhibit more peaks than the ones
from SPODI. It is assumed that each peak can be approximated by the Gaussian
function defined in table 2.2 with an individual peak area, FWHH and peak position.
If one does not see any anisotropic broadening of peaks, i.e. if the width of the peaks
attributed to different peak family seem to exhibit the same behaviour; one can define
the FWHH thanks to (2.1). By doing so, it is possible to counter the overlapping of
neighbouring peaks (more encountered in organic materials than in metallic crystalline
structure, not in our case). A 6 dependant FWHH will also ease the refining and
take into account the position of these peaks into the derivation of the peak width.
According to Caglioti (1958), the full width at half-height can then be defined according
to the following equation:
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H? = Utan®6 + Vtan + W, (2.1)
H=2/2In(2)0o (2.2)

with H the FWHH, o the standard deviation and U, V, W instrument specific param-
eters.

Caglioti (1958) also proved that for neutron diffractometers working with three
soller collimators and a crystal monochromator; U, V and W can be determined if one
knows accurately the horizontal angular divergence of each collimator «;, the take-off
angle of the beam 6,,, and the mosaicity of the monochromator 5. We define oy, as and
a3 respectively as the horizontal beam divergence between source and monochromator,
the horizontal beam divergence between monochromator and sample and the horizontal
beam divergence between sample and detector. This geometry has been explained
before in chapter 1. For SPODI (table 1.1), we have oy = 20, ay = 25", ag = 10,
20,, = 155 and 8 = 20’. The equations defining U, V and W are given by:

B 4(a2ad + a2B% + a2B?)

= 2.3

tan®6,, (af + o3 + 48?)’ (23)

Vo 4a3(a? + 26%) (2.4)
tanf,, (of + o3 + 45?)’

W= alal + adal + asad + 46% (a3 + a?) (2.5)

a? + a3 + 42

The computation for SPODI can be found in figure 2.7. For 3T2, due to the
necessity of determining new corrections, the parameters given by the instrument where
not used but rather determined by whole-pattern fitting. One can either directly use U,
V and W in the parameters or simply extract their values from the FWHH. A common
set of U, V and W values were first determined and then used as fixed values for all
the diffractograms for further analysis. Due to the large freedom on the FWHH, it is
necessary to have many peaks to fit, at least 3. One can also see in the case of SPODI
that the evolution of the FWHH is quantitative only for high angles and that high
angle peak are determinant in the evaluation of U, V and W. This is actually the goal
of the high resolution powder diffractometer, to keep a constant and low FWHH at low
diffraction angles.

Peak broadening

As said before, the peak width that was defined by Caglioti (1958) is only sufficient
if there is no anisotropic contribution to the peaks. It is then possible to fit all the
peaks width with a single function. However, some sources of peak broadening might
sometimes affect only some directions in the lattice, due to e.g. strain in one direction
of the lattice.

Peak broadening is due to both the instrument and the sample that deviate from an
assumed perfect model. For example, the wavelength of the instrument is not entirely
monochromatic and the sample can have impurities. The final peak broadening can
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Figure 2.7: The FWHH computed for SPODI given by (2.1) for U = 0.0137,V = —0.0156
and W = 0.160.

be computed by the convolution of the peak broadening due to the instrument and
the peak broadening due to the sample; for example the intensity contribution from
an impurity inside the sample is also subject to peak broadening effects from the
instrumental setup, both effects are inter-dependant. The substraction of one type
of broadening from the other depends on the peak shape (Lorentzian, Gaussian or
pseudo-Voigt) and varies from the sum of the squares of each contribution (Gaussian)n
the sum of each contribution (Lorentzian) to a complex deconvolution (pseudo-Voigt).

Instrumental contribution Sample contribution

Radiation source has a finite size Size of the diffracted domain

Incident beam not perfectly monochromatic Strain due to dislocations and concentration gradients
Possible misalignment of the instrument Deviation from the perfect crystalline structure

Possible axial divergence between incident/diffracted beams (impurities, stacking faults; ...)
Configuration of the soller slits (2.1)

Can be measured by using a sample with very low sample Subtract the instrumental contribution after use

broadening (nearly perfect sample) of a nearly perfect sample

Table 2.3: Peak broadening in neutron powder diffraction. The main contributions are either
due to the sample or to the instrumental setup. Instrumental corrections are always in place.

One can notice that the FWHH defined earlier does not directly depend on the
sample and can not possible take into account stress, strain or preferred orientations.
The instrumental contribution to peak broadening results in a slow increase of the peak
width at very low angles and in a rapid increase for high angles.

The sample contribution to peak broadening can be used to determine the size of
the domain in a specific direction. A formula linking crystallite size and peak width
was derived by Scherrer in 1918:
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r_ K\
[ cosb

where I is the mean size of the ordered crystalline domains, K is a dimensionless shape
factor (constant, depends on the sample) usually taken as equal to 0.9 and [ is the
FWHH after substraction of instrumental broadening and other sample contribution
to broadening (e.g. strain). For example, if we notice that the FWHH is higher for the
peaks of the (100) family in a cubic sample, we can deduce that the crystallites or the
domain of diffraction is smaller in this direction.

To understand the contribution of inhomogeneous strain to the peak broadening,
one can visualize the (hkl) planes separated by a distance dpy (1.42). If the lattice
is subject to homogeneous tensile or compressive stress perpendicular to the planes,
the result will just be an evolution of the interplanar distance and a shifting of the
position of the associated Bragg peak. However, if we have inhomogeneous strain due
to structural defects (impurities, vacancies, dislocations, ...) the distance between the
neighbouring planes will evolve in space, which could result in a distribution of the
shifts in the peak position i.e. peak broadening. The following equation, derived from
Bragg’s law, relates the mean inhomogeneous strain € to the resulting peak broadening

Be:

(2.6)

B = Cetanf (2.7)

where C is a constant depending on the type of strain in the sample.

Peak asymmetry

Due to axial divergence in terms of finite sample and detector sizes, asymmetric peaks
can be seen in the diffractograms at low theta. The functions used for peak asymmetry
are semi-empirical. The integrated peak area is not affected but the peak position might
be shifted which would cause errors in the refinement. We can use the simple equation
described in Rietveld (1969) to correct the distribution of the peak:

y; = I, (1 — P(20; — 20;)* x s/ tan 6, (2.8)

Where P is the asymmetry parameter, s = +1,0, —1 depending on relative position
of the point to its mean position. [} is the intensity before the asymmetry correction.

Peak indexing

It is quite straightforward to determine the positions of the Bragg peak in a powder
diffractogram by simply taking the mean value of the Gaussian after asymmetry cor-
rections. One can then extract quantitative information about the crystal structure
solely from the indexing of the Bragg peaks. The final value of the lattice parameters
are given by the refining of the interplanar spacing through the Bragg (1.38) and the
reciprocal space metric tensor. Since we work with a cubic system, the computations
are relatively simple. The dependence of dpx; on the lattice parameter has been derived
before for a cubic system (1.42) given again here with Bragg’s law:
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al
7 ol E— 2.9
SNV EER e (2.9)
A= 2dhkl sin 6 (210)

There are two ways to extract the value of the lattice parameter during the refine-
ment. First, one can let the minimization routine find the Bragg peak positions and
then use this set of values to determine the lattice parameter via (2.11). The second
possibility that was chosen here is to force the positions of the peaks to be directly
determined via the lattice parameter and the Miller indices. This method needed some
preliminary indexing that can be done theoretically if one knows the crystalline struc-
ture or by analyzing the diffractogram but allowed us to directly refine the lattice
parameter while being sure that the peaks were not misindexed.

20 = 2 arcsin (2.11)

hkl

With a simple python function that returns the position of the peak (figure 2.8).

def peak_index_theta SPODI(a, h, k, 1):
7?77 Peak index in fumnctiom of lattice parameter ,
with the wavelength from SPODI”””
dhkl = a/ np.sqrt(h**2 + k««2 + 1**2)
q=(2«pi/dhkl)
return np.degrees (np.arcsin ((qx10x%(10))=
(wavelength SPODI/(4xpi)))=«2)

Figure 2.8: Python function computing the position of the peaks from the lattice parameter
and the Miller indices.

The minimization routine was always performed through a least squares method, a
method that will be described in details in the following paragraphs. To determine the
exact lattice parameter, one must also take into account the instrumental zero-shift in
the refinement that could lead to misinterpretations if excluded. The positions of the
peaks are all shifted from a constant value due to a slight difference between the 180°
position of the instrument and the real position of the incident beam.

The wavelength of the instrument being directly used in the determination of the
lattice parameter from the peak positions, one must be assured that the value given
by the instrument is correct, otherwise it is possible to refine the wavelength using a
simple system where the crystal structure is known to confirm the value of \ following
the same method.

One can see in table 2.4 that some peaks will even overlap for high symmetry
structures such as cubic, in our case (511) and (333) or (442) and (600). One can then
simply add both multiplicities during the refinement process to take the peak overlap
into account.
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Cly, | Miller indices (111) (311) (331) (511) (333) (531) (533) (551)
hW+EkE2+12 3 11 19 27 27 35 43 51

B2 | Miller indices  (200) (222) (420) (440) (620) (444) (642)
A2 +12 4 12 20 32 40 48 56

A2 | Miller indices (220) (400) (422) (442) (600) (622) (640) (820)
h? + k? + [ 8 16 24 36 36 44 52 68

Table 2.4: First Miller indices for each peak family, the value computed by h?> + k> + 12 is
then proportional to the peak positions through (2.11).

Background modelling

If a neutron does not contribute to the intensity of a Bragg peaks through coherent
scattering, diffuse elastic coherent scattering or inelastic coherent scattering, it can
contribute to the background. This is due to several different physical phenomena.
First, we have the incoherent scattering from the incoherent cross-sections as defined
in (1.31). It is due to deviations of the scattering length from the mean value b;. The
deviations result from the system that is no more assumed to be be constituted of the
same nuclei without a nuclear spin but of isotopes with different scattering lengths
distributed around b; and with a nonzero nuclear spin I.

By simply looking at the evolution of the background and the Bragg peaks with
temperature, one can see that some intensity is transferred from the Bragg peaks to the
background as the temperature increases. The increase in diffuse scattering (neutrons
scattered at many angles rather than at a specific angle) with temperature is due to
both the Debye-Waller factor that increases with the temperature and to the magnetic
intensity, directly linked to the order in our system. The contribution from magnetism
has been derived before (1.86) and is constant well above the transition temperature 7.,
where the system switches from a ferromagnetic regime to a paramagnetic regime and
does not show magnetic short-range order. The Debye-Waller contribution known as
thermal diffuse scattering (TDS) increases with temperature, following the evolution

of the isotropic thermal displacement u(_;f)

Besides the dynamic displacement of atoms, the lattice is also subject to static
displacement, i.e. point defect such as site substitution, impurities in the lattice,
vacancies or any kind of disorder and deviations from the assumed crystalline model
also contribute to the background by affecting the long-range order of the crystal
structure. The repercussion of a single defect are important for they induce short-
range order in the lattice; the displacement decreases slowly and a very large amount
of neighbouring atoms can be affected.

The point defects could be due to errors in the composition (evaporation during
melting, starting with excess for one element). In our case, the sample composition
(table 2.1) has very low deviations from the theoretical compositions. These defects
have been classified (first and second kind of Krivoglaz defects) depending on how they
contribute to the diffuse scattering.

The background contribution are either constant with q (diffuse scattering) or in-
crease with q (e.g. DWF). However, a background decreasing for high q values was
observed, confirming our theory that the incoming intensity was too high for medium
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q. To fit the observed data to a model, one can include a function describing the
background in the model if the background is of interest, so that it is also possible to
refine this function returning an accurate description of the background. In this case,
the background was first computed by linear interpolation. The peak positions were
first graphically determined and the points y; that were inside the peak were assigned a
value by interpolation. A polynomial curve of degree 5 (2.13) was then fitted through
least squares method and assigned to the background of the curve (figure 2.9). A
degree 5 was chosen to accurately describe the variations of the intensity (impossible
at low degrees) while also avoiding polynomial wiggle more pronounced with higher-
degree polynomial. At higher temperatures, the background proved to be difficult to fit
though a polynomial equation, not just decreasing with q anymore but showing strong
contributions from coherent inelastic scattering near the Bragg peaks.

5
B(z, &’):Zai x o'+ e (2.12)
i=0
B(z, @) = ao + a1z + ag2® + asx® + agx* + ¢ (2.13)
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Figure 2.9: Background curves fitted through a classical polynomial approach plotted in orange
for Niy g5 MnSb at 45 °C (top) and 790°C (bottom) for 3T2.

It proved to be easier to use weighed least square methods to fit the diagram by
(2.14) with first kind Chebyshev polynomials 7T}, especially for high temperatures (fig-
ure 2.10). The weights as well as the degree N of the equation were found empirically.
The weights taken during the weighed least squares regression were simply taken as the
square of the variance of the counting statistics. More information about the variance
is provided later. The background is then given by:

fla, @) =) a.Tu(z) + e (2.14)

with a, the N + 1 coefficients determined by the weighed least square regression.
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Figure 2.10: Background curves fitted through a Chebyshev polynomial approach plotted in
orange for Niy o5 MnSb at 45 °C (top) and 790°C (bottom) for 8T2. The background curves
follows the evolution of the background much better than in a classical polynomial approach.

Final model

After having listed the parameters in play, one can derive the final intensity collected
by the instrument and create a model that is used inside the fitting routine. It is
necessary to understand the role of each parameter since the goal of this discussion
is to provide a model that can be used for both the fitting of the diffractograms and
a subsequent refinement of the parameters that can then be used to understand the
ordering process in Niy_, MnSb. It would be possible to fit the models by a summation
of ordinary Gaussian peak but it would then be impossible to extract information from
the diffractograms.

The peak areas are given by (1.45), defined in the previous chapter, in which are
included both the structural parameters and the instrumental parameters such as the
multiplicity for powder diffraction. Equations (2.15) and (2.16) have been used during
our refinements to describe the intensity received by a point y; after substraction of
a background B; following y; = Y; — B;. Y, is the total intensity received by the
detector binned to 6;. Since the peaks look symmetric, the asymmetry of the peaks
was neglected in a first approach.

NP
vi= > fu(20;, B) + B(6;, §) + e (2.15)
k
- . 1 (20, — 26,)°
(20, B) = C x A x ji, x L(26;) x exp(—2W) x s X exp [— T |
(2.16)
B=(C, A, jr, W, o, b)) (2.17)

The subscript £ designs variables taking a single value per peak when the subscript ¢
designs variables that change for each (6;, y;) bin of the detector. A is an instrumental
constant that differs between 3T2 and SPODI. j, is the multiplicity of the peak, Ly
the Lorentz factor defined for each peak by taking the peak position 26, and finally
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exp(—2W) is the Debye-Waller factor. The peak follows a Gaussian distribution with
o, the standard deviation and 26, the position of the Bragg peak defined by (2.11).
The intensity of the peak has also been normalized by the maximum intensity of a
Gaussian (0yv/27). Finally, € is the error associated to each bin.

The structure factor Fj, is not used in the model but rather modelled by a constant
C, the peak area, normalized and corrected by the Lorentz factor , the multiplicities and
the Debye-Waller factor so that one can extract in the future the structure factor from
the refinement. It is theoretically possible to compute the structure factor beforehand
and to include it in the refinement (Rietveld 1969) but this would impinge on our idea
of analyzing the data by using different structure factors, explained in Chapter 3. The
method describes in this chapter was first published by Pawley (1981).

The final number of counts received by the detector for Bragg peaks can be modelled
as a summation of the fx(26;, E) function over the number of peaks N;. Multiple peaks
could overlap if their positions were relatively close but this phenomena was not seen
on our diffractogram, at least for Bragg peaks. The common definition of the FWHH
by (2.1) is still useful to discriminate additional peaks due to the sample’s environment
in the instrument. According to the previous equation, one can easily include the theta
dependant FWHH by substituting the standard deviation by H (see (2.2) and (2.1)).

It is important to subtract the background B(6;, §') before or to model it outside
fr(20;, 5) if one wants to only fit the peaks for otherwise the background would be
seen as a contribution shared by all the peaks which is physically wrong and very
complicated to fit. Refining the function with both the background and the function
describing the peak intensity results in better statistics.Fmulti A first approach to our
model is drawn in the figure 2.11, for the intensity given from a single detector and in

figure 2.12 for the model of a diffractogram by whole pattern fitting.
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Figure 2.11: A Gaussian model fitted through least squares method on a single detector with
A =70.36,u =49.16 and o = 0.12.
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Figure 2.12: A 3T2 diffractogram for Niy o5 MnSb at 200°C, model fitted through least squares
method(a) and residues (b).

2.2.3 Least squares method
Process modelling

Process modelling is defined as the description of a response variable y by the sum-
mation of a deterministic component given by a mathematical function f(Z, E) plus
a random e that follows its own probability distribution (see the engineering statistics
handbook published by the National Institute of Standards and Technology NIST/SE-

MATECH 2012). We have:

y=f(Z:0)+e (2.18)
Since the model cannot be solely equaled to the data by the deterministic mathematical
function f, we talk of statistical model that are only relevant for the average of a set
of points y. Each response variable y; defined by the model is binned to a predictor
variable x; which are inputs to the mathematical function. 5 is the set of parameters
that will be used and refined during the modelling process. In general we have:

7= (21,29, ..,2n), U= W1,y2, - yn), B=(b1,02 s Bum) (2.19)
It is important to differentiate between errors and residuals, if one works with a sample
of a population and evaluates the deviation between one element of the sample and the
average value in the sample, we talk of residuals. However, the error is the deviation
between the value of this element and the the average on the whole population, the true
value that is unobservable. For least squares method, the residuals will be evaluated,
difference between the observed value and the mathematical function.

The value of the parameters is usually unknown before modelling unless for simu-
lation experiments where one uses a model with a predetermined set of parameters to
evaluate its outcome. For refinement, the parameters can be first-guessed and approxi-
mated from literature (e.g. the lattice parameter) but it is the purpose of the refinement
to lead to new and accurate parameters. The relation between the parameters and the
predictor variables depends on the nature of our problem.
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Linear least squares method

For a linear problem, a generic function produced by the summation and multiplica-
tion of the predictor variable by constants or the predictor variable is used, e.g. the
polynomial model used in the determination of the background (2.13) or (2.20). In
that case, one must use a linear least squares regression method, or simply named least
squares method. We speak of linear models when they are linear in the parameters, so
that in the end they consists of a system of linear equations solved by determining the
value of 5 .

The linear least squares method is now commonly used for many systems that
are either inherently linear or well-approximated by linear models on subsets of their
definition domains.

However, since this method is limited into the shapes that it can take by using linear
parameters. There can be some difficulties to extrapolate for data sets that show sharp
evolution over long range definition domains. For such data sets, it is possible to use
different methods that are based on the understanding of linear least squares method.

Nonlinear least squares method

Nonlinear least squares method uses the basic equation (2.18) in which the functional
part is not linear with respect to the parameters 5 and for which the value of the
parameters is determined using least squares method. An example of a nonlinear
model is the very model that is used throughout this thesis (2.16) which is nonlinear
in the use of sinuses and exponential. A nonlinear least squares method allows one to
fit more accurately complex systems that can be found in the nature (diffraction) or
even in computer science, engineering, finance... If the model is defined over a large
range, it is possible to think about extrapolation or applying the model to similar data
sets. However, a nonlinear method must be done iteratively, with starting values or
initial guesses as close as possible to the exact values. The concept of using iterative
algorithm can be understood by working progressively, starting with the initial values
% and using derivatives to find a global minimum with the parameters 5 It is then
possible to iteratively solve local linear problems.

B~ BT = BE 4 AB (2.21)

where 5} is the estimated value of the parameter 3; at the k iteration, and in general

5 is an estimation of the true parameters 5 A good understanding of the system is
hence needed, otherwise the nonlinear method will either fail due to the impossibility
to converge towards a good set of parameters or converge towards a local minimum
instead of a global minimum.

Weighed least squares method

There is however a shared issue between standards linear and nonlinear least squares
regression methods. Sometimes the response values can show strong variations over
the range of the predictor values, this phenomena is known as heteroscedasticity. In
that case, if one assumed the errors to be Gaussian following a normal distribution and
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notices that having different errors would be more coherent, a weight can be introduced
as a prefactor of the residual when minimizing the square of the residuals, i.e. the square
of difference between the observed value and the mathematical function. This weight
W; will determine how much each residual is important into the determination of the
final parameter.

In the case of the neutron powder diffractograms for which the intensity of the
points is ruled by many different physics process, the use of weighed least squares is
one way to improve the quality of the regression. For example, the intensity of a point
belonging to a Bragg peak is much greater than for the points that only receive diffuse
scattering and for which the background impinges on the peaks with increasing q due
to factor such as the DWF; it is clear that each (6;,y;) bin does not have the same
error and should not have the same importance in the determination of the model.
To counter this, one must give less importance to the points that were less precisely
measured, i.e. by using weights determined individually before the fitting routine that
quantify the precision of each point. A standard approach for a system in which the
standard deviation of the errors is not constant, is to equal the weight of a point to
the inverse of the variance for this point, yielding a most precise fit that adapts to the
quality of the data and treats each point accordingly.

Of course one must know exactly the variance in order to apply this method, the
weights must be determined precisely relative to one another otherwise this method
will just add errors instead of relieving the model from them. If one does not know
the weights exactly, one can estimate them from the experiment but only with high
statistics to be certain that the weights are correctly estimated and do not lead to a
wrong result. In our case, the weights are at first simply equalled to the variance of the
counting statistics. For each point y; created by subtracting a background B; from the
total intensity Y;, we have a statistical weight W; defined by (2.23), the variance of the
background in unknown since the background is determined graphically, the variance
of the total intensity Y; is equal to itself in counting statistics Rietveld 1969. We have:

1 1
W, = V) 10X B Y, (2.22)
with vy, =Y; — B; (2.23)

Minimization process

The "method of least squares” that is used to obtain parameter estimates was indepen-
dently developed in the late 1700’s and the early 1800’s by the mathematicians Karl
Friedrich Gauss, Adrien Marie Legendre and (possibly) Robert Adrain [Stigler (1978)]
[Harter (1983)] [Stigler (1986)] working in Germany, France and America, respectively.

To find the value of the parameters in a linear or nonlinear least squares method,

=,

we use the weighed least squares method. The function f(Z, 3) is fitted to the data y
by minimizing the following criterion:

N ~ Y2 N
2= ZWZ{yZ — fla; ﬁ)} = ZVVJ’ZZ (2.24)

with N the amount of (;,y;) bins in our experiment and r; the residuals.
The sum of the square of the deviations between the data point y; of the (6;,y;) bin

and the corresponding f(z;; 5) in the model is minimized. For nonlinear models such
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as ours, the computation must be done via iterative algorithms. The algorithm finds
the solution of a system in which each of the partial derivative with respect to each
parameter is zero, i.e. when the gradient is zero. For a system with M parameters [,
we have M times the following equation:

~
-

(855) i [W f ) (%ﬁ)” B 2?””(;%) =0 (225)

=1

the subscript j stands for the other parameters different from [, that are taken as
constant in the partial derivative. One can apply the Taylor expansion to (2 25) by

assuming that the true parameters B can be individually written as §8; = ﬁk + Aﬁk’

and that the term Aﬁf tends to zero. We develop the Taylor series as follows for the
k iteration:

2, 5 R M ok
flai B) = flas 85+ ABY) & fla BF) + Y (M) (ABE) + 0 (ABE)  (2.26)
j=1 7 s
2, M . .
= flo 8% + ) JyABE+ 0 (ABY), (2.27)
j=1

with: Jij = (

ap;
where J;; is the Jacobian, computed at each iteration. The terms of order higher than

1 are ignored when Aﬁ;’? tends to zero. The residuals can be rewritten according to the
previous equation as:

~ ~
= —,

ri=yi — f@iB) = o — o B5) + flai B%) — flas B) ~ Ays — Z JyABE, (2.29)

~
—

Ay =y; — f(x:; 6°) (2.30)

By rewriting (2.25) with another Jacobian and by replacing f(z;; B) by (2.26), we have:

=1

> [2W (- Zmﬁk) ] 0 2.31)

N M
Z Z Widij Jis Aﬁ;k = Z Wi Jis Ay; (2.32)

i=1 j=1 i=1
It is possible to simplify the equation by using matrices:

(JTWIAB = J"W Ay (2.33)
The matrix (JTW.J) contains information from the mathematical model, it is the

weighed sum of the product of the partial derivatives contained in the Jacobians. The
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data is contained in the matrix Ay. To find the next shift AS, the algorithm must
invert the matrix (JTWJ) :

AB = (JTWI) T x JTW Ay (2.34)

Therefore, if the inversion is impossible, the model is at fault. If the inversion is
possible but the data is wrong, then the shifts will be wrong. This equation is the
basis of the Gauss-Newton algorithm used to minimize the sum of the squares of the
residuals between the data and the model output. By ignoring the elements of order
higher than 1, we can write introduce the Hessian H and the gradient GG that are then
used inside the fitting routine:

N N
Hj, =2 JWidi, G=2> J WAy =g~ H'G (2.35)
i=1 i=1

The least squares method were performed on Python using the SciPy package
(Jones, Oliphant, Peterson, et al. 2001), it is important to understand the different
steps taken by the programs to be able to play with the different algorithms proposed
by SciPy for least squares. One can have many different approaches to a problem. For
example, in the case of a simple problem such as the fitting of a background on a poly-
nomial model, a simple polynomial fitting via numpy.polyfit (Van der Walt, Colbert,
and Varoquaux 2011) that uses least square method was performed.

On the other hand, regarding the fitting of the entire model defined in (2.16) for the
whole diffractogram, a cost function was first minimized through the scipy.optimize.-
minimize method to fit the model with the Broyden Fletcher Goldfarb Shanno (BFGS)
algorithm. This algorithm belongs to Quasi-Newtonian methods for which the Hes-
sian matrix is not entirely computed but approximated via gradient evaluation. Con-
straints or boundaries were not used throughout the refinement, otherwise other algo-
rithms must be used. In that case, for the scipy.optimize.minimize method, sequential
quadratic programming (SQP) is used for nonlinear constrained problems with the
condition that the cost function and the constrains are twice differentiable, hence the
quadratic term. The scipy.curvefit method was also used at early stages for it allows
quick fitting procedure, also customizable through the many arguments that can be
taken into account. It would also have been possible to compute the Jacobian directly
but using SciPy certified methods is easier although less transparent.

The precision of the result increases with the number of bins that must in any
case be superior to the number of parameters. Using a whole-pattern fitting model
increases the statistics and yields a superior model, the overlapping of the detector
also contributes to finer results.

Validation criteria

The criteria used to assert the fitting is the weighed R-factor, given by:
% L9y 1/2
Zfil Wi{yi - f(flfi; 5)}
Zij\il Wiy?

If one knows precisely the crystalline structure and thus the structure factor, one can
also use another R-factor by summing (1.45) and (1.72) for single peaks:

Ry =100% ( (2.36)
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thz ’]hkl(d)S) - Ihkl(comp)|)
R = 100 % 2.37
n ’ ( > nit ki (0bs)] (2:37)

The R;-factor is quite versatile since if one manages to extract the nuclear or
magnetic intensity, one can choose to compare them by writing a nuclear Ry-factor or a
magnetic Ry-factor instead of the total R;,;-factor. Especially for an experiment where
the peak overlap is very low and the extraction of I (0bs) is facilitated. While using
algorithm that works with least squares method, the output of the fitting procedure
also gives information on the quality of the fitting depending on criteria proper to the

-

algorithm. During the refinement, the residuals defined as y; — f(z;; ) are plotted for
each data point under the model. Graphically analyzing the residuals gives a good
general idea on whether or not the fitting succeeded and will be the standard way of
asserting the goodness of the fit for this thesis.

For a least-square regression, the standard deviation of the error term is assumed
to be equal and estimated from least squares equation by:

n—m

However, since the weighed least squares method here maximizes the likelihood
of the weighed non-linear regression model, the standard deviation of the Gaussian
errors are not equal anymore. Moreover, the test statistics follows a y? distribution,
in our case a Poisson distribution, for which the errors depend on the parameters of
the process i.e. on the model. The model being a statistical process computed by the
parameters [ instead of a random process, to insure the best statistics, the weights
are then taken from the model. Proceeding to a y? goodness of fit test comes then
naturally as a way to assert the quality of the fitting. However, the author did not
have time to perform such tests.

2.3 Correction coefficients

A large part of this thesis was first spent on learning Python, JupyterLab, neutron
powder diffraction and the diverse regression analysis methods that could be applied
to neutron diffraction. First, it was necessary to begin with the fitting of single peaks
to test the quality of the model and of the minimization algorithm (figure 2.11). The
model gradually improved from a simple Gaussian to a model that could take into
account multiple peaks allowing for example the utilization of zero-shifts and the com-
mon determination of the peak by U,V and W (figure 2.12). After constructing and
testing different models to produce a single one that could be used for the fitting of all
diffractogram and creating low time complexity modules with functions that could be
applied to different data sets, the following method finally lead to conclusive results.
Once the model and the methods were clearly defined and understood, the next step
was the determination of the correction coefficients that would be applied to each detec-
tor belonging to the 3T2 multidetector to correct the overall high intensity for medium
q of the 3T2 diffractograms. This was done by the mean of the SPODI diffractograms
that did not show such behaviour at room temperature. To proceed, a model was first
fitted onto the SPODI diffractograms through a weighed least squares regression. The
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peak areas of each peak were extracted from the models and utilized along with the
background in the creation of a new model for the 3T2 diffractograms. Since the data
for SPODI is only available at room temperature, for samples that were previously
used at 3T2, the correction was performed on the latest diffractogram after the heat-
ing and cooling cycle for the 3T2 diffractograms, i.e. the last diffractogram recorded on
cooling. These corrections had to be done for the four data sets corresponding to each
composition. This first set of corrections was named ”Intensity correction coefficient”
and is then applied to each of the 3T2 diffractograms.

Moreover, proceeding to a first-hand correction with SPODI, adds to the overall
quality of the future overlap corrections regarding the overlap of the detectors of 3T2.
Indeed, if we performed a correction of the overlap between the neighbouring detectors
of the 3T2 multidetector, some efficiencies and positions could have converged towards
local wrong minimum since only the neighbouring detectors can be taken into account.
One way to avoid this issue would have been to reiterate the corrections, however
this could have possibly lead to false values linked to the accumulation of errors. By
using SPODI first, that works with a 5 detector overlap, a first step towards the real
values is taken, the final efficiencies that mean to correct the wrong overlap of the
3T2 detectors will be determined after. The SPODI corrections can be classified as
long-range corrections taking into account a global intensity reduction for medium q
whereas the next correction set is meant to specifically correct the overlap between the
neighbouring detector.

2.3.1 Intensity correction coefficient

In the following section, we will discuss the determination of the correction coeffi-
cients for the Ni; gsMnSb data set. The figure in this section present the result for the
Nij gsMnSb data sets, the general results for each composition are given in the annex.
First, the SPODI diffractogram recorded at room temperature was fitted through least
squares method. In order to fit the model, initial parameters has to be determined,
this holds for each fitting routine that is discussed. The initial parameters were deter-
mined graphically for each composition at SPODI and at 3T2., for a total of 8 sets of
initial parameters. It was tried to change the initial parameters as a function of the
temperature but the fitting routine converged towards the same final parameters even
if the same initial parameters were used. The zero shift was first guessed to be equal
to zero. The half width parameters U, V and W were computed using (2.3), (2.4) and
(2.5) for SPODL.

The position of the peaks were also used to give an initial guess for the lattice pa-
rameter, the peak positions in the model being solely determined though their Miller
indices and the lattice parameter (table 2.4 and figure 2.8). Hence, graphically deter-
mining the position of the peaks resulted in a first guess of the lattice parameter a.
The result of this procedure is presented in the figure 2.13.

The second step was to repeat the procedure for the diffractogram recorded on 3T2.
However, since the calibration was subject to discussion, the U, V and W parameter had
to be first guessed from a first fitting routine rather than computed. For Ni; g5sMnSbh,
27 measurements were performed at different temperatures, ranging from 045 °C to
975°C, by progressive heating and then by progressive cooling. Hence, a first fitting
via least squares was done for which U, V and W were set as free parameter, common
to all the peaks in a spectra but different for each temperature. The full width at half
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Figure 2.18: A SPODI diffractogram for NijosMnSb at room temperature, model fitted
through least squares methods with characteristics in annex. U V and W are fized parameters.

height H was then computed from the resulting U, V and W at each temperature via
(2.1). It can be seen that without using boundaries, the fitting is not conclusive for all
the spectra (figure 2.14(a)). An average value of U, V and W was then taken over U,
V., W values of the successful models (figure 2.14(b)) and then fixed for the following
fitting routines.

H in degrees
H in degrees
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Figure 2.14: The full width at half height H computed via (2.1) for each temperature as
a result of the first fitting routine (a) and the final values taken for the fitting of the 3T2
diffractograms (b).

The lattice parameter also determined graphically for 3T2 is slightly different since
the measurement at SPODI was performed on the same sample as for 3T2 but after
an entire heating and cooling cycle up to 975°C. A second fitting routine was then
performed with the refined U, V and W values to produce models for each one of the
3T2 diffractograms (figure 2.15).

After creating a model for SPODI and a model for 3T2, a third model was created,
that would allow the correction of the intensity of 3T2 based on SPODI. This model
consists of a background function and a peak function (2.16), the background and the
peak intensity were corrected separately since it is not certain that the neutrons con-
tributing to the background in SPODI follow the same ratio than for the contribution
to the Bragg peaks.
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Figure 2.15: 3T2 diffractogram for NijosMnSb at 200°C, model fitted through least squares
methods with characteristics in annex. U V and W are fixed parameters.

First the peak intensity were corrected. The correction being performed on 3T2,
the peak positions, the FWHH parameters (U,V,W) and the zero shift were kept from
the model that was fitted on the 3T2 room temperature data set with fixed U,V,W
values. One can notice by analysing the models of 3T2 and SPODI that since the
incident wavelength X is different between the two instruments, more peaks can be
indexed on the 3T2 diffractometer. It was hence impossible to correct the intensity
of the last peaks of 3T2 since they did not have a SPODI counterpart. The intensity
of the SPODI peaks were then normalised to avoid the scale parameter linked to the
instrument and divided by their respective Lorentz factor (2.15) and multiplied by a
new Lorentz factor corresponding to their peaks on 3T2. The Lorentz factor differs
due to its dependence on 6, the peak positions being different because of the different
incident wavelengths. The intensities were then normalised again to take into account
the 3T2 scale parameter. A small Debye-Waller factor was taken into account since the
temperature are different between both experiments (200°c for 3T2, 20°C for SPODI),
the multiplicities do not need to be corrected since they stay the same.

The background of SPODI was also utilized since the background of 3T2 suffered of
the same calibration problems that resulted in higher intensities for medium q. Since
SPODI and 3T2 do not have the same amount of points in the diffractograms (5200 for
3T2 versus 3910 for SPODI), the background of SPODI had to be plotted on a different
domain and for a different amount of points. The background was also normalised for
each point to take into account the different instrumental scale parameters. The final
model is then shown in figure 2.16. One can notice that the background of the final
model does not decrease with q nor increase for medium q. The intensity of the peak
is also clearly too high for 3T2 especially around 26 = 40°.

The peaks that are not fitted on any of the models are due to the sample’s envi-
ronment in 3T2 and cannot therefore be found on any of the SPODI diffractograms.
They are hence absent from the models. Besides the peaks that can clearly be seen as
not included in the model, there is a peak hidden behind the third peak of the model
that explains the shape of this peak, larger at the bottom that any of the other peak.
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These peaks can be seen for models fitted on other compositions, given in appendix.
The satellite peaks were attributed to Vanadium or Niobium by a parallel refinement,
the importance of using the U,V,W parameter is here underlined, allowing us to avoid
any wrong peak broadening. Moreover, these peaks were problematic during the fitting
since a comparison between the model and the diffractogram for a detector that does
not show any Bragg peak related to the sample would only have background contri-
bution from SPODI to the model but would still possibly have a Bragg peak related
to e.g. Vanadium on the 3T2 diffractogram. This was taken into account during the
refinement, by utilizing the fact that a general idea of the positions of our peaks was
known, the other peaks were ignored during the fitting routine.
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Figure 2.16: 3T2 data at 200°C' for Niyog5MnSb as a function of the scattering angle 20
(a), model created by merging the SPODI and 3T2 models (b), Superposition of both curves
underlining the intensity issues regarding the background and the peaks for 3T2 (c).
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The intensity correction coefficients are obtained by utilizing the multidetector.
Each detector is fitted to the model via least squares method in a reverse way by refining
not the model but the original data to provide a first correction for the efficiencies of
both the intensity of the peaks and the background. The correction coefficients are
shown in figure 2.18. One can see that the corrections for the background follow a
curve that first decreases up to medium q and then increases again, confirming that
the background was too high for medium q. The evolution of the correction of the
peak intensity follows what is seen in figure 2.16 with values superior to one when
the the peak on the detector had higher intensities than in SPODI and inferior to one
when the intensity on the detector was too weak compared to SPODI. The peaks are
corrected by decreasing the intensity of the peaks around 26 = 40° and by increasing
the intensity of the other peaks. Moreover, a detector can only see satellite peaks that
do not exist on the SPODI diffractograms, it was not possible to correct the intensity
of these peaks but leaving them as before would have impinged on the quality of the
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diffractogram. The correction coefficients for these detectors was thus determined by
interpolation using the neighbouring detectors.

A problem that arised during the correction is that since the shape of the back-
ground on SPODI (figure 2.16) is overall different from the shape of the 3T2 diffrac-
togram at the beginning. One can notice that the background at the beginning is
now slowly decreasing when it was stable before (stable for early q but decreasing at
middle q). In the end, since we work with the peak areas to extract information about
the crystalline structure, correcting the peak intensities so that they would resemble
the SPODI peaks was prioritized, moreover this region of the background is not too
important.

The final result is shown in figure 2.17 after correction using the product of both
efficiency corrections. Again, one can see that the background is flat and that the
intensities of the peaks now follow the evolution of the intensity on the SPODI diffrac-
tograms. We now have 3T2 diffractograms that have their intensity corrected for both
the peaks and the background and that are in agreement with the data collected at
SPODI. The difference between the 3T2 data before and after the correction is shown
in the figure 2.19.
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Figure 2.17: Superposition of both the corrected 3T2 data at 200°C' for Nijog5MnSb as a
function of the scattering angle 20 (blue) and the previous model that was created by merging
the SPODI and 3T2 models (orange) (a).
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Figure 2.18: Intensity correction coefficients for the Bragg peaks, obtained by the means of
the SPODI diffractograms and least square methods (b), intensity correction coefficients for
the background, obtained by the means of the SPODI diffractograms and least square methods
(b). Both correction coefficients are meant to correct the overall problems of intensity of the
3T2 diffractograms.

2.3.2 Overlap correction coefficient

The second set of correction coefficients is meant to correct the overlap between the
neighbouring detectors. This set of coefficient is called ”overlap correction coefficients”
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Figure 2.19: 3T2 diffractogram plotted at 200°C for Niy o5 MnSb without any corrections (a),
3T2 diffractogram plotted at 200°C' for NiyosMnSb after each detector was corrected for its
efficiency and position by the SPODI corrections (b), difference in the (20,y;) bins (c).

and is obtained by creating new models via least squares method on the diffractograms
that have already been corrected by the intensity correction coefficients. New models
were produced (figure 2.20) for each diffractogram, for which the intensity of peaks and
of the background clearly differs from the previous model (figure 2.15).

On one hand, for each one of the temperature dependant diffractograms corrected
by the intensity correction coefficients, we have created a new model. This model if
fitted through least square methods and uses the overlap between the neighbouring
detectors to find the best value Y; of a point linked to #;. For example if we have a
(Y;, 6;) bin on the overlap between two detectors, (Y; 1, #; 1) the nearest bin given by
the detector on the left and the (Y; p, #; p) the nearest bin given by the detector on
the right. During the least square regression, the residues between the value computed
by the model for 6; ;, and for 6; p are minimized (along with many other, taking into
accounts their respective weights), thus the value given by the model for 6;, is optimal
and the regression analysis finds the best value for each point 6; by taking into account
the overlap of the detectors.

On the other hand, we still have the diffractograms with the wrong overlap between
the neighbouring detectors but for which the true value of the efficiency and the shift of
each detector can be estimated thanks to the models. The aim of the next procedure
is to find the best values of the efficiency and shifts of each detector by comparing
the models and the diffractograms. We thereby created a cost function with two
parameters, efficiency and shift, that work on a single detector. We proceed via a least
square regression minimizing the square of the difference between the value Y; given by
the detector over its range and the values of the model computed for each point 6; on
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Figure 2.20: Model on corrected Nil.05MnSb, 200°C' diffractogram, fitted through LSM.

this range. This algorithm uses an efficiency ep and shift sp parameter, the optimal
values of these parameters is given as an output and are then used as detector overlap
correction coefficients. To maximize the statistics of this procedure, the cost function
minimizes not only the residues for a single diffractogram but minimizes the residues
for each temperature dependant diffractogram. For example if we have 27 temperature
dependant diffractograms for Ni; g5 MnSb, the resulting efficiency and shift coefficients
are the best taking into account each one of the diffractogram and not only for the
room temperature which is mandatory since the coefficients must be constant over the
experiment. The cost function is defined with pseudocode in (2.39).

costp(ep, Sp) Z { Z W{ y; X ep) — f(x; + sp; g)} }, (2.39)

(ep.f, Sp,f) = minimize(cost, [1,0]) (2.40)

With P the amount of T-dependent diagram per composition, N the number of points

that can be accessed by a detector D and 5 the parameters of the model that are defined
beforehand during the fitting (figure 2.20). The initial guess taken for the efficiency and
the shift is always respectively 1 and 0. After this procedure, the diffractograms are
corrected for the overall increases of intensity at medium q by the intensity correction
coefficients and for the overlap by the overlap correction coefficients. The efficiencies
and shifts that constitute the overlap correction coefficients are shown in the figure
2.21.

One must be careful with the importance given to each diffractogram in the cost
function, since the higher temperature diagram showed a much more erratic background
curve, the value of the residue after the fitting of the model for a given (6;, y;) bin was
on average more important than the value for lower temperature diagram. The higher
temperature diagram took then more importance inside the fitting routine than the
lower temperature diagram, especially for the diagram recorded at temperatures higher
than 800°C for which the Debye-Waller factor is so important that the second half of
the diagram is mostly background, making it impossible to have a proper comparison
between the models and the diagrams. This was countered by taking only the diagrams
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up to 600°C into account. Another solution could have been to utilize the value of the
Debye-Waller factor into creating new quotient for each diagram inside the fitting
routine.

Regarding the evolution of the shift as a function of the number of the detector
(figure 2.21), one can notice that the value tends to increases at first and to then
decrease with 6, this could be due to an error in the lattice parameter or in the zero
shift of the models, however the shift is very little and this should not have impinged
on the final results. The high variations of the efficiency for the last detectors can
also be explained by looking at the figure 2.22 where we can see that the last detector
had an intensity output much lower than its neighbours. Overall the evolution of the
efficiencies is not very important and each coefficient is close to one. This can at first
be rather surprising but can be explained by the error of the points belonging to the
peaks being higher because they receive more counts. Thus, the overlap is corrected
but difficult to visualise.

One must keep in mind that some of the peaks due to the sample’s environment were
ignored during the procedure and that the overlap between the neighbouring detectors
can still show some strong differences for these peaks. However, this phenomena should
happen only for detectors that do not overlap with any other peak on the diffractogram
and that cannot be corrected having thereby no effect on the final results.
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Figure 2.21: The overlap correction coefficients for the shifts (a) and for the efficiencies (b).

2.3.3 Validity and discussion

This procedure has been repeated for each composition, leading to four different set
of intensity correction and overlap correction coefficients. The reason behind this is
that it is unsure that the calibration of the instrument was the same for each sample,
the instrumental setup could have been changed between each experiment. Therefore,
using separate coefficients is more careful. The results for each composition are shown
in annex. If one wished to go through the algorithms used throughout the thesis, one
can find the modules and functions on the GitHub of the author. The final values were
given via scripts that are meant to be available in the future through a GUI.

The correction coefficients exist simply based on the assumption that the 3T2 data
was wrongly calibrated. If it was not the case, there would have been no need to create
a new set of coefficients, it could have been possible to simply use the coefficients
given by the beamline scientists but the difference between SPODI and 3T2 was so
obvious that it would have been wrong to interpret the data without performing some
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corrections. It was our aim to produce the best corrections in the first part of this
thesis, by tweaking the efficiencies and the shifts of the detectors, to obtain data sets
onto which new models can be refined and used for the extraction of information on
the crystalline structure.

Overall, fitting the diagram, even at high temperature was not the issue. It was
more important to be certain that the final correction coefficient would not impinge on
our analysis by being wrong or impossible to justify rather than helping by correcting
the data. The difference between figure 2.22(a), figure 2.22(b) and figure 2.22(c) is
quite obvious. The data does not exhibit the large intensity for medium q that was
seen before, the overlap between the neighbouring detectors is also corrected and it is
now possible to proceed to a satisfactory analysis of the data while being certain of the
quality of the data.
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Figure 2.22: Niy o5 MnSb, 200°C, 3T2 diffractogram plotted detector by detector without any
corrections (a) with the first SPODI corrections (b) and with the final corrections (c).
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Chapter 3

Understanding the ordering process
in Ni>_ . MnSb

Introduction

This chapter is focused on the phase transition between a L2; structure to a C1,
structure in Heusler alloys that exhibit both structures as a function of temperature
and composition.

As presented in Chapter 1, full-Heusler alloys of the formula NisMnSb crystallize in
the cubic L2; structure (Castelliz 1951; Szytula et al. 1972) whereas the half-Heusler
NiMnSb alloys crystallize in the non-centrosymmetric cubic C1y, structure (G. E. Bacon
and Plant 1971; Ritchie et al. 2003). Furthermore, the Niy_, MnSb system has proved to
be a promising candidate for both ferromagnetic shape memory properties (Chatterjee
et al. 2008) and magnetocaloric effects (Dubenko et al. 2009) near the off-stochiometric
NioMnSb full-Heusler structure due to antiferromagnetic properties and a transition
towards a martensitic structure at lower temperature. On the other hand, NiMnSbh
is one of the first materials predicted to be a half-metallic ferromagnet (Groot et al.
1983) that showed attractive properties (Galanakis et al. 2006; J Brown et al. 2010)
such as high Curie temperature that could be applied to spintronics as a half-Heusler
(Wolf et al. 2001).

The degree of order in the lattice strongly influences the final properties of Heusler
alloys, e.g. a film of NiMnSb shows a polarization of 58 % (Soulen et al. 1998) where it
was expected to be fully spin-polarized (Groot et al. 1983). This result has been linked
to atomic disorder and deviations from the perfect structure after first-principles cal-
culation for NiMnSb (Orgassa et al. 1999) extended to other half-Heusler alloys (Zhu,
Cheng, and Schwingenschlogl 2011). The importance of understanding the ordering
process is still of utmost importance and has been subject to investigations in other
half-Heusler such as NiMnGa (Lazpita et al. 2011) or recently in NiCrGa (Baral et al.
2019) with some element of answers, e.g. the introduction of an extending Slater-
Pauling rule for systems with defects (Galanakis et al. 2006). The ordering in excess
off-stochiometric NisMnSb alloys is proven to have a direct impact on the stability of
the martensitic phase (Sheuly Ghosh and Subhradip Ghosh 2019) that is fundamen-
tal for ferromagnetic shape memory alloys, the ordering process between B2 and 1.2,
being printed on the martensitic phase during the transition from a high temperature
austenite into a low temperature martensite via a diffusionless phase transition.

The Niy_,MnSb system shows magnetic transitions as well as structural transitions
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which have been studied by room temperature X-ray and neutron powder diffraction
(Webster and Mankikar 1984); differential scanning calorimetry (DSC) (Nagasako et al.
2015; Hollender 2016), and diffusion triple method (Miyamoto, Nagasako, and Kainuma
2018). However, a half to full Heusler transition has never been studied precisely in
terms of long-range ordering as a function of temperature, i.e. by scattering. Moreover,
the kinetics of ordering and the origin of the phase transition are still unknown.

The determination of the atomic order in Heusler alloys can be determined via
neutron powder diffraction experiments (Sdnchez-Alarcos et al. 2013, room temperature
measurements). In-situ temperature dependent neutron powder diffraction (NPD) has
been performed by Neibecker (2018) on samples with different concentrations x of Ni to
have a better grasp of the atomic scale dynamics during the C1,, - L2; phase transition.
Due to instrumental problems with the diffractometer 3T2 at LLB (Saclay, France),
correction coefficients were determined by utilizing models first developed by Rietveld
(1969) and Pawley (1981), computed using high-resolution diffractograms collected at
SPODI in FRMII (Garching, Germany). In this chapter, we will discuss the ordering
phenomena determined by the extraction of both structural and dynamical information
covering a wide range of temperature and composition in Ni,_,MnSb following the
refinement of new models on the corrected diffractograms.

3.1 The L2,-C1; phase transition in Ni,_,MnSb

The most recent phase diagram for the Ni,_,MnSb system is given by a representa-
tive combination of both DSC and High-Resolution Scanning Transmission Electron
Microscopy (HRSTEM) (Nagasako et al. 2015) besides neutron powder diffraction mea-
surements (Webster and Mankikar 1984), it is drawn in figure 3.1 as a function of the
amount of Nickel in the alloy. Complementary measurements were performed by DSC
and neutron powder diffraction (Neibecker 2018).
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Figure 3.1: Latest phase diagram for the Nio_, MnSb structure, given by the summation of
the work of Webster and Mankikar (1984), Nagasako et et al. (2015) and Neibecker (2018).

The L2, order in the system is assumed to first result from short range order for-
mation after the liquidus with a high number of anti-phase boundaries (APB) that
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gradually grow during the ordering process into anti-phase domains (APD); character-
izing the long-range order of the L2; structure and then of the C1, structure in the
lattice. The correlation function describing the ordering process can be linked to the
size of the anti-phase domains. However, one must determine what kind of ordering
process takes place in the lattice during the following C1;,/L2; transition.

Room temperature diffraction results (Webster and Mankikar 1984) showed that
the half-Heusler structure is stable for compositions going from NiMnSb to Ni; goMnSb
in a highly ordered C1,, structure with vacancy occupancy on the C site (figure 1.3).
Nevertheless, the ordering in NiMnSb proved to be a function of heat-treatment (J
Brown et al. 2010) and vacancies have been identified randomly occupying both A
and C site in NiMnSb. A magnetic transition has been confirmed for intermediate
compositions of Niz_,MnSb (Webster and Mankikar 1984; Nagasako et al. 2015). The
emphasis if however on the continuous structural transition confirmed (Nagasako et
al. 2015) between an L2; structure towards a Cly, structure, for intermediate systems
with composition ranging between = ~ 0.40 and x = 1. No features accompanying the
structural transition was observed for Ni; 7;sMnSb in any of the DSC measurements,
the kinetics being probably too slow and the compositions too similar for a transition
to happen for composition with x < 0.40. Overall, these results suggest a vacancy
order-disorder phase transition ruled by the dynamics of the structural vacancies. An
additional transition for x > 0.85 has been identified by DSC measurements and could
be the result of a transition between a disordered B2 structure to an ordered L2;
structure for compositions near NiMnSb. This is however unclear since the intensity
of the featured DSC peak was reported to decrease after several heating and cooling
cycles (Neibecker 2018), requiring further studies. The stability of the 1.2; structure
near NisMnSh has also been confirmed experimentally for off-stochiometric composition
near NiMnSb (Sanchez-Alarcos et al. 2013) and theoretically by density functional
theory (DFT) (Sasioglu et al. 2004).

As the temperature is lowered, the lattice transforms from the L2; structure (figure
1.3) in which the Nickel and the structural vacancies are equally hosted by both the A
and C sites to a Cly, structure in which the structural vacancies and the Nickel are each
hosted on one Nickel sublattice, specifically the Ni on the A site and the vacancies on
the C site. This results in a breaking of symmetry and a second-order phase transition
from a L2; structure towards a Cl,;, structure. Another explanation could reside in
anti-site disorder and the annihilation of structural vacancies during the transition.

A first approach to the temperature dependant phase transition can be derived via
the Gibbs Free Energy G (Easterling and Sherif 2009) defined by:

G=H-TS (3.1)

with H the enthalpy (J), T the temperature (K) and S the entropy (J/K). For a given
composition, we assume that the structural transition is a vacancy order-disorder tran-
sition during which the C1;, structure gradually becomes more energetically favourable
regarding H than the L2; structure. By linking the entropy to disorder in the lattice,
the entropy term clearly favours the L.2; structure since disorder between the two Nickel
sub-lattices maximises entropy. The entropy being proportional to the temperature of
the system in the right term of (3.1), the difference in the right term gradually increases
between the two structures with temperature. The transition would then be ruled by
the configuration entropy of structural vacancies (Nagasako et al. 2015) resulting in
L2, structures at high temperatures.
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Since the entropy term is supposedly greater in the L2; structure than in the C1,
structure, the enthalpy term of the L2 structure must be greater than for C1y, structure
to act as a counterpart at lower temperatures. For a system with vacancies, one can
draw a simple picture by linking the enthalpy to the interaction between the vacancies.
If one looks at the half-Heusler and full-Heusler system as defined by Graf (Graf,
Felser, and Parkin 2011) (figure 1.1 and 1.2), one can determine two basic interaction
for vacancies and their neighbours. If the vacancies are more favorably neighbours,
then at low temperature the lattice would show a phase separation between MnSb on a
NaCl structure and fully-ordered NioMnSb. Since this phenomena is not observed, the
vacancies tend to not be neighbours and the final result is a Cly, structure. Complex
models have been developed that take into account magnetic interactions (Rusz et al.
2006). Nevertheless, this chapter will be focused on experimental data to solve the
ordering process.

3.2 Bragg peaks and structural analysis

3.2.1 X-Ray diffraction

To characterize the samples and assert their purity, the samples were first studied by X-
ray diffraction. X-ray powder diffraction was performed on a laboratory Rigaku Smart-
Lab diffractometer at Tohoku University, Japan using Cu-Ka radiation and a Bragg-
Brentano geometry (figure 3.2). Samples for X-ray diffraction have been grounded
manually to grain sizes < 32pum after quenching from 1173K. The high-resolution X-
ray diffractograms were then Rietveld refined for occupancy (table 3.1). This was done
previously by Pascal Neibecker as a part of his PhD thesis (Neibecker 2018).

Compound rel. Ni occ. (4a) rel. Niocc. (4b) lattice parameter a (A)

NiyosMnSb  1.077(8) -0.027(8) 5.93015(5)
NisMnSb  1.074(10) 0.176(10) 5.97334(6)
Ni, 50MnSb  1.125(12) 0.375(12) 5.99265(7)
Niy 7sMnSb  1.097(20) 0.653(20) 5.99962(3)

Table 3.1: Refined relative site occupancies of Ni and lattice parameters for room temperature
X-ray diffractograms of a series of Nio_,MnSb samples quenched from 1173 K, taken from
Neibecker (2018).

The occupancy of the 4a site is superior to one for each composition, a breaking
of symmetry is observed between the 4a and 4b sites regarding the occupancies of
Ni or of the vacancies. The refined occupancies on the 4a and 4b sites for Nickel,
assuming fully ordered Mn and Sb sublattices, confirm a fully ordered C1,, structure
at room temperature, despite the quenching from 1173K, temperature at which all
structures have a L2, order. It is possible that the kinetics of the transition were too
fast and that there is no residual disorder from the L2; phase for x > 0.5 as reported by
Hollender (2016). However, this can be surprising considering Ni; 75MnSb for which no
structural phase transition was confirmed in previous DSC measurements (Nagasako
et al. 2015; Neibecker 2018). It is possible that the two structures are too similar for
this composition to measure a change by DSC and that there is no observable difference
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Figure 3.2: XRD diffractograms of Nig_, MnSb samples on a logarithmic intensity scale show-
ing the measured data (colored curves) and the Rietveld-refined diffractograms (black curves).
The patterns have been recorded at room temperature using Cu-Ka radiation. Samples have
been quenched from 1178 K. Peak families are indicated below the diffractograms, taken from
Neibecker (2018).

between the C1;, and L2; order for this composition. The slight deviations observed in
the occupancy values could be the result of the hypothesis taken during the refinement,
i.e. that the Mn and Sb sites are fully ordered, making it impossible to consider any
anti-site disorder yet.

Moreover, an increase of the lattice parameter with the amount of Nickel is noted,
constant with the values given in previous room temperature studies (J Brown et al.
2010; Webster and Mankikar 1984) with a maximum deviation of 0.14%. The value of
the lattice parameter is of course sensible to the heat-treatment applied to the samples
as it will be evidenced later.

The study was then performed by neutrons that allowed us to discriminate with
more ease between Ni, Mn or Sb due to their coherent scattering length being much
more different than their atomic form factor. Indeed we have oy; = 10.3 barn, oy, =
—3.73barn and g, = 5.6 barn.

3.2.2 Ordering and structure factor for neutron diffraction in
Ni;_,.MnSb

It was shown that the atomic ordering in the lattice can in principle be determined from
diffraction measurements, the analysis of the peaks giving insight into the position of
the atoms in the lattice via the relative intensity of the structure factor. It is possible to
proceed to the refinement of the site occupancy following Neibecker (2018). However,
a more fundamental approach is preferred in this study by analyzing the structure
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factor of the A2, B2, L2; and Cl1,, structures. The expression of the structure factor
can be derived from (1.46) for different order in the lattice, depending on the relative
positions 7" of the atoms in the lattice. A first approach to the ordering in the lattice
by computing the structure factor is given in the following table by assuming perfectly
ordered A2, B2, C1;, and L2; structure. Since the L2; structure is a superstructure of
the B2 structure which again is a superstructure of the A2 structure, every peak in the
diffractogram can be assigned to either the A2, B2 or C1,,/L2; family. A peak family
being here defined as the peaks whose Miller indices are defined following the same
symmetry rules, e.g. (h4+k+1)=4n for the A2 peak family.

Bragg peak family ‘ Order independent A2 Superstructure B2 Superstructure C1y,/L21

Miller indices of planes | (h+ k +1) = 4n (h+k+1) =4n+2 h, k, 1 all odd
in Bragg condition

Structure factor F=4(A+B+C+D] F=4[(A+C)—(B+D)] F=4[(A-C)*+ (B - D)*)'/?

Table 3.2: Miller indices and structure factor of the crystalline planes associated to each peak
family assuming perfect order and occupations.

The B2 structure is achieved before the L2; or Cl, structure, the B2 structure
possibly also showing disorder, it can be assessed through the B2 peak family. However,
one can see through table 3.2 that only the intensity of the peaks differ between 1.2, and
C1,, associated to the same superstructure. Indeed, the Miller indices of the crystalline
planes being the same, both peak families have the same peak positions (1.43) i.e.
when h.k and | are all odd. The general solution of the structure factor derived for
each family must be extended to Ni,_,MnSb with the A, B, C and D sites respectively
occupied by Ni, (1—x)Ni, Mn and Sb in the C1,, structure and by (1—%)Ni, (1—5) N1,
Mn and Sb in the L2; structure (figure 1.4). The intensity of the peaks within the
same family is then only affected by the multiplicity, the Debye-Waller factor and the
Lorentz factor (1.45). We have X, Y and Z respectively the scattering length of Ni, Mn
and Sb and (2 — z) the relative amount of Nickel in our crystalline system. To resume,
for a C1}, structure, we have three family of peaks each characterizing one kind of order
in the lattice and whose intensity is ruled by the three following equations.

Fap=4[2-2)X+Y +Z], (3.2)
Fpy=4[2-2)X - (Y +2)],
Foy, =4 [(xX)? 4+ (Y = 2)*)'?

When for a L2; structure with both the 4a and 4b sites partially filled with vacancy,
we have three family of peaks whose intensity is ruled by the next three following
equations. As seen before, only the intensity of the last family differs.

Fi=4[2-2)X+Y + 2], (3.5)
Fpo=4[2-2)X - (Y +2)],
Fro, =4[Y — Z]
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The important result extracted from these equations is that the structure factor,
which defines the intensity of each peak family, can directly yield information about
the ordering of the lattice. For example, the A2 structure factor results from all lattice
sites contributing in phase, the structure factor of the A2 reflections is thereby only
dependent on the general composition of the system. The B2 structure factor results in
this case from a diffraction contrast between the la site (randomly occupied by Ni and
vacancies) and 1b site (randomly occupied by Mn and Sb) of the B2 (Pm3m) structure
(figure 1.4). The C1,,/L2; structure factor results from the diffraction contrast between
the 4a (occupied by Mn) and 4b site (occupied by Sb) of the L2; (Fm3m) structure.
There is also contribution from Ni on the 8c sites for C1, that allows us to differ
between both order if full order is assumed for Mn and Sh.

The final goal of the refinement is to extract temperature-dependent structure factor
and lattice constant that could then lead to a satisfactory microscopic explanation, in
terms of vacancies and anti-sites, of the ordering process in Niy_,MnSb.

3.3 In-situ neutron powder diffraction

3.3.1 Refinement results

After the correction of the in-situ neutron powder diffractograms in Chapter 2, the
refinement of the model was done via Pawley’s method (Pawley 1981). Each peak
is modelled by its peak intensity I, its peak position 6, computed via the lattice
parameter and a peak shape determined by the half-width parameters U, V and W
(G.Caglioti 1958). The intensity of the peak here is not calculated from the structure
factor in contrast with Rietveld refinement (Rietveld 1969). Having no overlap between
neighbouring Bragg peaks in the diffractograms proved to ease the task, the Pawley
method being known to show some limitations in the case of strong overlap that lead
to the definition of new methods (Le Bail 2005). The refinement procedure took as
argument the intensity of each peak, the lattice parameter, the zero shift and the
half-width parameters (2.15).

The output of the refinement of each diffractogram was stocked in a Python class,
taking advantage of the object-oriented aspect of this language, allowing a quick anal-
ysis of each diffractogram, mandatory when working with several data sets. Creating
classes also allowed to introduce class methods that would then give additional infor-
mation for each diffractogram such as the relative absolute squared structure factor
(RASSF) defined earlier. Table 3.3 resumes the information stocked in each class and
provides a simple picture of how one can extract miscellaneous information from the
refinement of a model. Such a table can be printed for each one of the neutron powder
diffractograms.

Room temperature neutron diffraction at SPODI

If the data acquisition at SPODI was first performed to correct the 3T2 diffractograms,
it is also possible to proceed to the extraction of the structure factor from the Bragg
peaks on this data-set, allowing to test the different models used before applying the
method to the 3T2 data-sets. Room temperature neutron diffraction has been per-
formed on 5 different samples. The Ni; 7sMnSb sample was only quenched from 1173K
when the other, also analyzed at 3T2, were slowly furnace cooled from high tem-
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peratures during the in-situ neutron diffraction. No additional heat-treatment was
performed after this. Since the quenched samples showed a fully ordered structure in
the Rietveld refinement of the XRD data, a fully-ordered C1,, structure should also
result from the slow furnace cooled samples.

Miller indices Peak area Peak position (°) Peak position (A~') Multiplicity Lorentz factor DWF RASSF

(1,1, 1) 16124.235510 25.981643 1.824843 8 10.154461 0.956273 207.563268
(3,1, 1) 10644.084071 50.978134 3.493409 24 2.991032 0.848861 174.678528
(3,3, 1) 6034.470406  68.878832 4.590902 24 1.895583 0.753528 176.029695
(3,3,3) 5591.257589  84.773835 5.472490 32 1.489577 0.668907 175.359962
(5,3, 1) 6918.620968  100.261995 6.230517 48 1.324092 0.593794  183.325969
(5,3, 3) 2963.421430  116.574978 6.905792 24 1.314371 0.527120 178.219160

Table 3.3: Miller indices, peak area, peak position, multiplicity, Lorentz factor, Debye- Waller
factor and RASSF computed for the Cl1y peak family via refinement of the room temperature
diffractogram recorded at SPODI for Nij o5 MnSh.

One can extract the structure factor of each peak family for each composition from
the diffractograms utilizing the peak intensity of each peak. Each peak is corrected
by its multiplicity, Lorentz factor and Debye-Waller factor. One must be careful that
the (6,0,0) and (4,4,2) peaks form the B2 family coincides due to the high symmetry
of the cubic structure, giving a multiplicity of 30 for that peak. The same occurs
in the Cl;, peak family for the (3,3,3) and (5,1,1) peaks with a multiplicity of 32.
Moreover, the first peaks will have some contribution due to magnetism as seen in
Chapter 1 (figure 1.8). Following literature reports by Brown (2010) and Galanakis
(2006), a collinear ferromagnetic structure is considered (1.81). This contribution from
magnetism can be excluded by modelling the magnetic structure factor dependence
on ¢, one would then have to assume a certain ordering of the lattice to compute the
magnetic structure factor since the contribution is mainly due to the Mn sites which
is slightly counter-intuitive in out current approach. The peak with medium to high
g-values having a magnetic contribution decreasing slower with ¢, the intensity of the
first two peaks were ignored into the determination of the Debye-Waller factor due to
important contribution from the magnetic structure. These results are presented for
the C1y, peak family in the table 3.3 for Ni; gsMnSb at SPODI.

Each peak is assigned to a peak family following its Miller indices. After the multi-
plicity, Lorentz and Debye-Waller correction, the value of the corrected peak intensity
should be the same for each peak of the family, except for the magnetic contribution.
The average of the corrected peak intensity is taken for each peak family and then
divided by the corrected peak intensity of the A2 family to delete the instrumental
contribution. One has then computed the relative squared structure factor for each
peak family per neutron powder diffractogram. On the other hand, the relative ab-
solute squared structure factor (RASSF) are then computed theoretically for different
ordering of the lattice as a function of the amount x of Nickel in Ni,_,MnSb (table
3.4).

The final results for SPODI are presented in figure 3.3. It is evident that at room
temperature, the data points follow the theoretical C1y, curve rather than the L2, curve,
proving that the lattice exhibits a C1}, order at room temperature and confirming what
had already been stated in previous studies. The possibility to discriminate between the
L2, and C1y, structures, despite common peak positions, is here highlighted. However,
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A2 B2 L2y (niy_0) L2y (arnsw) Cly
(Nis_, MnSb) (Niy_,)(MnSh) (Nip_,)MnSb  Ni;Ni,_,(MnSb) Ni,Ni,_,MnSh
H2-2)X+Y+2)] 42-0)X—(Y+2)] 4Y—-2)  4@X) A2 X) + (Y — 22

Table 3.4: Equations followed for the computation of the theoretical relative absolute structure
factor. The final results plotted in the following figures have been normalised regarding the
intensity of A2. The brackets indicate a state of disorder.
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Figure 3.3: Room temperature relative absolute squared structure factors (RASSF) obtained
via SPODI (circles) for the A2, B2 and C1,/L2 peak families for 5 compositions of the
Nig_ MnSb system together with the calculated absolute squared structure factors under var-
ious types of disorder (lines). As introduced before, brackets indicate a state of disorder
between the constituents.

one can notice that the B2 intensity is systematically too low when the C1}, intensity
is systematically too high, except for the C1y, intensity in Ni; 7sMnSb which is slightly
lower. Overall, it seems that the system shows some disorder for all compositions but
more importantly for compositions close to Ni; sMnSb for which the two structures
supposedly differ the most. We could also have deviations from stochiometry.

If one keeps in mind the previous equations (3.4) and the fact that the scattering
length of Mn is negative. A first hypothesis can be formulated to explain the deviations
observed in figure 3.3. If a Mn was to switch its 4c¢ site with a vacancy on a 4b site,
the result would be a decrease of the B2 structure factor with an increase of the
C1,, structure factor. This phenomena would be less important for compositions near
NiMnSh in which the C1y, structure is stable up to higher temperatures as evidenced in
the previous figure. To confirm this hypothesis, the anti-site disorder, i.e. the transfer
between a Mn and a vacancy must be energetically more favorable. Another possible
explanation could hold in the annihilation of structural vacancies by the redistribution
of the atoms inside the lattice (Alling, Shallcross, and Abrikosov 2006). However, more
measurements are first needed to confirm the disorder in the lattice.
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The precision of the measurements is crucial, as one can see the deviation for C1;
are sometimes very little compared to the deviations for B2. Nevertheless, these results
prove that diffraction measurements can be a powerful tool to understand the ordering
in the lattice through the analysis of the peak intensities. This method has then been
repeated for different temperatures on the 3T2 diffractometer at LLB (Saclay, France)
to provide a full picture of the complex interplay between the anti-site disorder and
the possible annihilation of structural vacancies in Niy_,MnSb.

In-situ neutron powder diffraction at 3T2
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Figure 3.4: Temperature dependant relative absolute squared structure factors obtained via
3T2 (circles) for the A2, B2 and C1b/L21 peak families for 5 compositions of the Niy_, MnSb
system together with the calculated absolute squared structure factors under various types
of disorder (lines). As introduced before, brackets indicate a state of disorder between the
constituents.

For Nij gsMnSb, Ni;j 95sMnSb and Ni; 50MnSb, the data acquisition was performed
on both heating and cooling while Ni; goMnSb was only measured on heating. Due to
78
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relatively long acquisition times, it was not possible to measure the samples continu-
ously upon heating/cooling. Instead, isothermal measurements have been performed
at various temperatures. The temperature range of the data collection is set in accor-
dance with the reported phase transitions by (Nagasako et al. 2015) for each sample.
After correcting the data as seen in Chapter 2, the previous method has been repeated
by correcting the intensity of each peak for the multiplicities, the Lorentz and the
Debye-Waller factor in the A2, B2 and Cl,,/L2; peak families. The importance of
determining precisely the Debye-Waller factor is here underlined to be certain that
the relative absolute squared structure factor computed at different temperatures can
be correctly plotted on the same figure and analyzed without errors. The RASSF is
plotted in figure 3.4 for four different compositions.

Regarding the low temperature values of the relative absolute squared structure
factor for the B2 and C1y,/1.2; peak families, all systems show a fully ordered C1,,
structure confirming the previous measurements at SPODI and the refined occupancies
extracted from XRD. The transition between the fully ordered C1;, and the disordered
L2 structures is noticeable by the important decrease of the C1;,/1.2; data points with
temperature,. The data is first in accordance with the C1,, curve at low temperatures
and with the L2; curve computed for disorder between Ni and vacancy on the 4a and
4b sites at higher temperatures. This decrease is particularly strong for Ni; gsMnSb
but only slightly noticeable in Ni; 50MnSb and absent in Ni; goMnSb. However, one
can see that the phase transition is difficult to confirm for both compositions when the
two curves are very similar in intensity.

Regarding the B2 points, it seems that they also tend to slightly decrease with
temperature for Nij gsMnSb and Ni; o5sMnSbh, again the decrease is even less visible in
Ni; 50MnSb and an interesting phenomena is featured in Ni; goMnSb in which the B2
points tend to slowly increase around 500K before decreasing after 800K. This could be
explained by deviations from stochiometry, as seen in figure 3.3, the relative intensity
between the A2 family and the B2 or Clb families are dependent on the amount of
Nickel in the lattice. A structure with higher amounts of Nickel would shift the relative
B2 curve towards values closer to 0.7, the C1y, curve towards values closer to 0.3 and the
L.21(Niy_,) curve even closer to the Cl,, curve. The observed data points would then
respectively follow the B2 curve and be comprised between the C1;, and L.2;(Niy_,)
curves that are relatively close for Nij goMnSb, proving that the transition is difficult
to detect in this region.

Following the analysis of possible disorder between Mn and vacancies in the C1;
structure previously written for the room temperature SPODI data, the intensity of
the B2 and C1,, peak families were expected to be respectively lower and higher than
their theoretical curves for temperatures well into the C1y, thereby confirming that
the Cl;,/L2;(Niy_,) phase transition is not only the result of mixing between Ni and
vacancies. This phenomena is observed for Ni; 50MnSb and Ni; goMnSb. However, a
global conclusion cannot be drawn here due to different behaviours of the structure
factors regarding the different compositions. Another hypothetical explanation to the
phase transition could be given by density functional theory (DFT) of structural de-
fects energies and was first drawn determined by Neibecker (2018). The possibility
of thermal vacancy annihilation, with a global rearrangement of the lattice resulting
in the reduction of the total amount of unit cells. The energy of different process
such as atomic swaps and anti-sites were computed by Alling Alling, Shallcross, and
Abrikosov 2006 for NiMnSb, assuming a fully ordered structure, in the optic of keeping
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and Abrikosov 2000 .

the half-metallic character of the alloy. Some possible processes resulting in vacancy
annihilation are detailed in the table 3.5. The idea being the redistribution of 1Ni,
1Mn and 1Sb to effectively reduce the total amount of unit cell by one. The process
with the lowest activation energy would then be the most likely to happen.

Energy cost Defects created Process

2.67 eV 4 defects 1Sb on Mn site, 2Mn and 1Ni on vacancy sites
2.63 eV 5 defects 1Sb on Mn site, 1Mn on vacancy site, 1 Mn on Ni site, 2 Ni on vacancy sites
2.59 ev 6 defects 1Sb on Mn site, 2Mn on Ni sites, 3 Ni on vacancy sites

Table 3.5: Energy cost and amount of defects created for different vacancy annihilation pro-
cess. The energy is computed by utilizing the swap or anti-site energy of individual process
given by Alling, Shallcross, and Abrikosov 2006.

The measurements being performed on NiMnSb and for individual defects, it can
be difficult to be certain of the precision in the energy calculation of the processes
resumed in table 3.5, especially when it comes to multiple defects. However, it proves
that such dynamics could be possible in our system. An example of disorder is given.

Some elements have a preferential site onto which migrating is less costly (figure
3.5). Mn on a Ni site (0.49 ¢V) and Mn on vacancy site (0.73eV) are both relatively
cheap compared to other types of anti-site disorder. E.g. Sb on Ni costs 6.47 eV and
Sb on vacancy costs 8.19 eV. Overall, Sb shows high energy defects besides anti-site
Sb on Mn three to four times cheaper than any other defect. This has been computed
assuming a fully ordered C,, structure. Nevertheless, a qualitative description of the
an energy-wise plausible process could be as follows. Combining Sb on Mn site and
Mn on Ni/vacancy sites, one would then have Ni, Mn and vacancies on the 4a and 4b
sites while having Sb and Mn of the 4c and 4d sites. This would result in a decrease of
the B2 and L2; peak families intensity at high temperature for a L2, structure. Such
decreases are observed for Nij gsMnSb at high temperatures and perhaps in Ni; goMnSb
after correction of stochiometry.
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Figure 8.6: Temperature dependent lattice parameters for four compositions of the Nig_, MnSb
(a,b,c,d) system as obtained from in-situ neutron diffraction at 3T2 (heating and cooling) and
from SPODI.

Lattice parameter

By directly refining for the lattice parameter, one can plot its evolution as a function
of temperature for the four intermediate composition (figure 3.6). All samples have
been first quenched from 1173K, then slowly heated and cooled in a furnace during the
acquisition at 3T2, they were then again measured at SPODI. The lattice parameter a
increase with the amount of Nickel can be understood intuitively, the lattice increasing
in size with more Nickel and less structural vacancies. The values given by SPODI are
overall higher than for 3T2.

At room temperature, the results seem to be consistent with the lattice parameter
given by X-Ray in table 3.1, who themselves showed a maximum deviation of 0.14%
with literature (Webster and Mankikar 1984). The 3T2 values seem however to be
systematically lower than both literature and X-Ray values. This could be explained
by the linear decrease in the shift observed in Chapter 2 and might need additional
refinements.

Moreover, a difference between heating and cooling is observed for Ni; gsMnSb,
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Nij osMnSb and Nij 50MnSb. The lattice parameter is constantly higher on cooling for
Nij gsMnSb whereas a slower increase is observed instead during heating compared to
cooling for temperatures ranging between 750K and 950K in Ni; o5sMnSb and between
550K and 800K in Ni; 50MnSb. The phenomena is more obvious in Nij osMnSb, the
values merge then for both low and high temperatures. Due to the lack of data points,
it is difficult to precisely determine the exact range of these deviations, making it
uncertain whether or not the slower increase of the lattice parameter is related to the
structural transition, the magnetic transition being too far off for both structures.

What first comes to mind when observing a difference in the lattice parameter
between heating and cooling is the annihilation of quenched-in vacancies. This however
would result into an increase of the lattice parameter during cooling. Then comes the
problem that one must find a phenomena that causes the lattice parameter to decrease
linearly but result into a slower increase on a given temperature range. Perhaps a
process that needs a certain activation energy during the transition from C1, to L2,
order. If the slower increase during heating was reversible and seen also during cooling,
we could have a disordering process taking place on a given temperature range, e.g.
disorder on the 4a and 4b sites. This could then be confirmed by the Debye-Waller
factor through an abrupt increase due to disorder in the lattice. However, no such
reversible transition is seen in the lattice parameter.

Debye-Waller factor

The Debye-Waller factor computed previously to obtain the evolution of the RASSF
following (1.55) has been plotted as a function of temperature for the four intermediate
compositions studied at 3T2 and for the room temperature results from SPODI. Logi-
cally, the value of the mean displacement increases with the temperature. The increase
appears to be linear for N11.25MDSb, Nil.50MDSb and Nil.GoMDSb. For Nil.05MDSb, the
increase is much slower at first on heating, and seems to converge towards a higher
value at room temperature. The Debye-Waller factor being proportional to the disor-
der in the lattice, vacancy disorder could start occurring only after 900K when the C1,
structure approaches the L2, structure.

If one takes 1000K as a reference, one can see that the mean displacement increases
with the amount of Ni in the L2, structure for high temperatures. For such tempera-
tures, the lattice is highly disordered with Ni supposedly equally distributed between
the 4a and 4b sites. The phonons could have a better propagation in compositions
with less vacancies at high temperatures, explaining this observation.

3.3.2 Discussion

The evolution of the C1,,/L2; RASSF in figure 3.4 implies a structural transition be-
tween a fully ordered C1y, structure as presented in figure 1.1 and a L2; structure with
disorder between the Ni and the vacancies on the 4a and 4b sites. The phase transition
is evident for compositions up to Nij 50MnSb. It is clear, however, that the ordering
process in the lattice is more complex than expected. Different types of disorder in the
lattice were presented to try to explain parts of the evolution of the peak families with
temperature. Complementary calculation would be necessary to fully understand the
phase transition in Ni,_,MnSb. Density functional theory proved to be a standard tool
to understand the general properties of Heusler alloys (Sasioglu et al. 2004) and shed
light on the ordering process by giving susceptible types of anti-site and swap disorder
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Figure 3.7: Temperature dependent Debye-Waller factor for four compositions of the
Niy_, MnSb (a,b,c,d) system as obtained from in-situ neutron diffraction at 3T2 (heating
and cooling) and from SPODI.

in the lattice (Alling, Shallcross, and Abrikosov 2006) More specific computations for
intermediate compositions and for different structures as well as the use of Monte-Carlo
methods, in place for several decades to solve phase transitions (Binder 1985), could
allow one to have a better grasp of the ordering process in Niy_,MnSb. Efforts are
being made into this direction regarding Monte-Carlo simulations (Zweck and Leitner
2020).

Moreover, complementary in-situ X-ray diffraction measurements could be per-
formed, offering better resolutions and demanding more detailed models to precisely
describe the diffractograms. Hence, X-ray diffraction would allow one to see inher-
ent broadening, due to strains or to anti-phase domains in the structure. Despite the
fact that no contrast exists between Mn and other elements of the lattice with X-ray,
it would be possible to extract X-ray weighted structure factor and occupancies for
the lattice sites, allowing one to have a more precise understanding of the sublattices
occupations with temperature. Furthermore, lattice parameters could be determined
with more precision. Regarding the evolution of the anti-phase boundaries (APB) with
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temperature, one could complement X-ray diffraction data with Lorentz transmission
electron microscope measurements (Murakami et al. 2013), which allows one to see the
spin-domains in the sample. The degree of order in the lattice and the magnetic prop-
erties of Heusler alloys are linked; as such, knowledge of the ordering process during
the phase transition, and therefore the magnetism of the system could allow tailoring
of the alloy’s properties

Nevertheless, solutions have been found (Neibecker et al. 2014) to increase the
ordering kinetics in Heusler alloys by retaining excess quenched-in vacancies, showing
a promising future for Heusler alloys that up to now had limited applications due to
disorder.
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Conclusion

This thesis was focused on two separate yet complementary projects. The first being the
understanding of process modelling applied to neutron diffraction curves, for the sake
of determining new detectors efficiency and shift corrections coefficients. The newly
determined coefficients allowing one to quickly correct entire data-sets after problems
appeared during data acquisition and to then create a model that could be fitted on
the diffractograms. The novelty here also being the combined use of diffractograms
recorded on the same samples but at two different neutron diffractometers. The exact
understanding of the modelling and correction process was deemed important. Rather
than using existing programs, self-written scripts and functions were precisely deter-
mined for every aspect mentioned in the thesis.

Secondly, the ordering process for intermediate compositions of Niy_,MnSb was
investigated by the means of in-situ neutron powder diffraction. The possibility of
determining the exact ordering process during the C1y,/1.2; phase transition is of great
interest due to numerous industrial applications besides the desire to truly understand
the dynamics of this phase transition. An emphasis was put on the extraction of
structural information from the models fitted onto the corrected diffractograms.

The correction coefficients that were applied to the 3T2 data sets were computed
by using room temperature measurements performed at SPODI. Both the overlap be-
tween the neighbouring detectors and the intensity, too high for medium ¢, were suc-
cessfully corrected and allowed new models to be refined on more qualitative data-sets.
The C1y,/12; phase transition has been confirmed through X-ray diffraction for the
quenched sample (up to Nij7sMnSb) at room temperature with full order of Ni and
vacancies on the 4a and 4b site, the 4b sites being shared between Ni and vacan-
cies. Moreover, the structural analysis performed via the extraction of quantitative
information from refined models computed on in-situ temperature dependent neutron
diffractograms confirmed the C1,,/1.2; phase transition on a wide range of tempera-
ture for intermediate compositions up to Ni; 50MnSb. However, the ordering process
proved to be complex and requires complementary approaches such as Monte-Carlo
simulations, density functional theory or additional characterization of intermediate
compounds via in-situ X-ray diffraction and TEM to be fully understood. Combining
in-situ X-ray diffraction and density functional theory to compute the energy of various
defects for intermediate compositions and L2; order could result in models relying on
more complete data to understand the ordering process
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Models for correction
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Figure A.1: 3T2 data at 200°C for Nij o5 MnSb as a function of the scattering angle 20 (a),
model created by merging the SPODI and 3T2 models (b), Superposition of both curves un-
derlining the intensity issues regarding the background and the peaks for 3T2 (c).
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Figure A.2: Superposition of both the corrected 3T2 data at 200°C for NijosMnSb as a
function of the scattering angle 20 (blue) and the previous model that was created by merging

the SPODI and 3T2 models (orange) (a).
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Figure A.3: 3T2 data at room temperature for Nip 50 MnSb as a function of the scattering
angle 20 (a), model created by merging the SPODI and 3T2 models (b), Superposition of both
curves underlining the intensity issues regarding the background and the peaks for 3T2 (c).
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as a function of the scattering angle 20 (blue) and the previous model that was created by
merging the SPODI and 3T2 models (orange) (a).
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Figure A.5: 3T2 data at 130°C for Nij¢oMnSb as a function of the scattering angle 20 (a),
model created by merging the SPODI and 3T2 models (b), Superposition of both curves un-
derlining the intensity issues regarding the background and the peaks for 3T2 (c).
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Figure A.6: Superposition of both the corrected 3T2 data at 130°C for NijgoMnSb as a
function of the scattering angle 20 (blue) and the previous model that was created by merging
the SPODI and 3T2 models (orange) (a).
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